Python爬虫入门教程 11-100 行行网电子书多线程爬取

简介: 行行网电子书多线程-写在前面最近想找几本电子书看看,就翻啊翻,然后呢,找到了一个 叫做 周读的网站 ,网站特别好,简单清爽,书籍很多,而且打开都是百度网盘可以直接下载,更新速度也还可以,于是乎,我给爬了。

行行网电子书多线程-写在前面

最近想找几本电子书看看,就翻啊翻,然后呢,找到了一个 叫做 周读的网站 ,网站特别好,简单清爽,书籍很多,而且打开都是百度网盘可以直接下载,更新速度也还可以,于是乎,我给爬了。本篇文章学习即可,这么好的分享网站,尽量不要去爬,影响人家访问速度就不好了 http://www.ireadweek.com/ ,想要数据的,可以在我博客下面评论,我发给你,QQ,邮箱,啥的都可以。

image

image

这个网站页面逻辑特别简单 ,我翻了翻 书籍详情页面 ,就是下面这个样子的,我们只需要循环生成这些页面的链接,然后去爬就可以了,为了速度,我采用的多线程,你试试就可以了,想要爬取之后的数据,就在本篇博客下面评论,不要搞坏别人服务器。

http://www.ireadweek.com/index.php/bookInfo/11393.html
http://www.ireadweek.com/index.php/bookInfo/11.html
....

行行网电子书多线程- 撸代码

代码非常简单,有咱们前面的教程做铺垫,很少的代码就可以实现完整的功能了,最后把采集到的内容写到 csv 文件里面,(csv 是啥,你百度一下就知道了) 这段代码是IO密集操作 我们采用aiohttp模块编写。

第1步

拼接URL,开启线程。

import requests

# 导入协程模块
import asyncio
import aiohttp


headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36",
           "Host": "www.ireadweek.com",
           "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8"}

async def get_content(url):
    print("正在操作:{}".format(url))
    # 创建一个session 去获取数据 
    async with aiohttp.ClientSession() as session:
        async with session.get(url,headers=headers,timeout=3) as res:
            if res.status == 200:
                source = await res.text()  # 等待获取文本
                   print(source)


if __name__ == '__main__':
    url_format = "http://www.ireadweek.com/index.php/bookInfo/{}.html"
    full_urllist = [url_format.format(i) for i in range(1,11394)]  # 11394
    loop = asyncio.get_event_loop()
    tasks = [get_content(url) for url in full_urllist]
    results = loop.run_until_complete(asyncio.wait(tasks))

上面的代码可以同步开启N多个线程,但是这样子很容易造成别人的服务器瘫痪,所以,我们必须要限制一下并发次数,下面的代码,你自己尝试放到指定的位置吧。

sema = asyncio.Semaphore(5)
# 为避免爬虫一次性请求次数太多,控制一下
async def x_get_source(url):
    with(await sema):
        await get_content(url)

第2步

处理抓取到的网页源码,提取我们想要的元素,我新增了一个方法,采用lxml进行数据提取。

def async_content(tree):
    title = tree.xpath("//div[@class='hanghang-za-title']")[0].text
    # 如果页面没有信息,直接返回即可
    if title == '':
        return
    else:
        try:
            description = tree.xpath("//div[@class='hanghang-shu-content-font']")
            author = description[0].xpath("p[1]/text()")[0].replace("作者:","") if description[0].xpath("p[1]/text()")[0] is not None else None
            cate = description[0].xpath("p[2]/text()")[0].replace("分类:","") if description[0].xpath("p[2]/text()")[0] is not None else None
            douban = description[0].xpath("p[3]/text()")[0].replace("豆瓣评分:","") if description[0].xpath("p[3]/text()")[0] is not None else None
            # 这部分内容不明确,不做记录
            #des = description[0].xpath("p[5]/text()")[0] if description[0].xpath("p[5]/text()")[0] is not None else None
            download = tree.xpath("//a[@class='downloads']")
        except Exception as e:
            print(title)
            return

    ls = [
        title,author,cate,douban,download[0].get('href')
    ]
    return ls

第3步

数据格式化之后,保存到csv文件,收工!

 print(data)
 with open('hang.csv', 'a+', encoding='utf-8') as fw:
     writer = csv.writer(fw)
     writer.writerow(data)
 print("插入成功!")

行行网电子书多线程- 运行代码,查看结果

20181015172037526

因为这个可能涉及到获取别人服务器重要数据了,代码不上传github了,有需要的留言吧,我单独发送给你


9150e4e5ly1fw8j8sshn9g207i07i3zo.gif
相关文章
|
24天前
|
数据采集 Web App开发 数据安全/隐私保护
实战:Python爬虫如何模拟登录与维持会话状态
实战:Python爬虫如何模拟登录与维持会话状态
|
1月前
|
数据采集 监控 数据库
Python异步编程实战:爬虫案例
🌟 蒋星熠Jaxonic,代码为舟的星际旅人。从回调地狱到async/await协程天堂,亲历Python异步编程演进。分享高性能爬虫、数据库异步操作、限流监控等实战经验,助你驾驭并发,在二进制星河中谱写极客诗篇。
Python异步编程实战:爬虫案例
|
2月前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
636 19
|
30天前
|
数据采集 存储 JSON
Python爬虫常见陷阱:Ajax动态生成内容的URL去重与数据拼接
Python爬虫常见陷阱:Ajax动态生成内容的URL去重与数据拼接
|
1月前
|
数据采集 存储 JavaScript
解析Python爬虫中的Cookies和Session管理
Cookies与Session是Python爬虫中实现状态保持的核心。Cookies由服务器发送、客户端存储,用于标识用户;Session则通过唯一ID在服务端记录会话信息。二者协同实现登录模拟与数据持久化。
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
503 6
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
509 4
|
数据采集 JSON 前端开发
Python爬虫进阶:使用Scrapy库进行数据提取和处理
在我们的初级教程中,我们介绍了如何使用Scrapy创建和运行一个简单的爬虫。在这篇文章中,我们将深入了解Scrapy的强大功能,学习如何使用Scrapy提取和处理数据。
|
数据采集 存储 中间件
Python进行网络爬虫:Scrapy框架的实践
【8月更文挑战第17天】网络爬虫是自动化程序,用于从互联网收集信息。Python凭借其丰富的库和框架成为构建爬虫的首选语言。Scrapy作为一款流行的开源框架,简化了爬虫开发过程。本文介绍如何使用Python和Scrapy构建简单爬虫:首先安装Scrapy,接着创建新项目并定义爬虫,指定起始URL和解析逻辑。运行爬虫可将数据保存为JSON文件或存储到数据库。此外,Scrapy支持高级功能如中间件定制、分布式爬取、动态页面渲染等。在实践中需遵循最佳规范,如尊重robots.txt协议、合理设置爬取速度等。通过本文,读者将掌握Scrapy基础并了解如何高效地进行网络数据采集。
|
数据采集 存储 JSON
Python爬虫开发:BeautifulSoup、Scrapy入门
在现代网络开发中,网络爬虫是一个非常重要的工具。它可以自动化地从网页中提取数据,并且可以用于各种用途,如数据收集、信息聚合和内容监控等。在Python中,有多个库可以用于爬虫开发,其中BeautifulSoup和Scrapy是两个非常流行的选择。本篇文章将详细介绍这两个库,并提供一个综合详细的例子,展示如何使用它们来进行网页数据爬取。

热门文章

最新文章

推荐镜像

更多