深度学习需要新的编程语言?

简介: CNN 之父再出豪言:深度学习需要新的编程语言当地时间 2 月 18 日,Facebook 首席首席人工智能科学家、卷积神经网络之父 Yann LeCun 在旧金山的国际固态电路大会上发表了一篇论文,分享了他关于人工智能发展的一些看法,同时也谈到自己对于芯片和硬件发展的关注和研究。
+关注继续查看

CNN 之父再出豪言:深度学习需要新的编程语言
image
当地时间 2 月 18 日,Facebook 首席首席人工智能科学家、卷积神经网络之父 Yann LeCun 在旧金山的国际固态电路大会上发表了一篇论文,分享了他关于人工智能发展的一些看法,同时也谈到自己对于芯片和硬件发展的关注和研究。在这其中,诸如“深度学习可能需要一种新的编程语言”等说法引起了热烈讨论。

“深度学习需要一种新的编程语言”
自 20 世纪 80 年代以来,LeCun 就一直致力于神经网络研究。由于他本人对于神经网络发展的贡献,所以被冠以“卷积神经网络之父”的称号。

在当天的演讲中,LeCun 对于人工智能的发展提出了一些新的看法。他表示,深度学习可能需要一种比 Python 更灵活,更易于使用的新编程语言:

“在谷歌、Facebook 和其他地方有几个项目旨在设计这样一种编译语言,这种语言可以有效地进行深度学习,但社区是否会跟进还不清楚,因为人们只想使用 Python。但现在的问题是:Python 真的是最好的解决方案吗?”

LeCun 认为,深度学习可能需要一种比 Python 更灵活,更易于使用的新编程语言。目前尚不清楚这种语言是否必要,但 LeCun 表示,这种可能性与研究人员和工程师非常根深蒂固的愿望背道而驰,很有可能带来颠覆性的变革。

根据 GitHub 最近的一份报告显示:Python 目前是机器学习项目的开发人员最常使用的语言,该语言同时也是构成 Facebook 的 PyTorch 和 Google 的 TensorFlow 框架的基础。

但是,随着代码越来越复杂,开发人员对于编程语言的要求也更高了,就连图灵奖得主大卫·帕特森也曾表示:是时候创造新的编程语言了。

与此同时,一些之前名不见经传的小众编程语言也逐渐成为一些开发者的新宠。最能说明问题的就是去年 8 月才正式发布 1.0 版本的 Julia,从 2012 年到现在,Julia 1.0 在编程界已经打出了自己的一片“小天地”,在 Github 上已经获得了 12293 颗星星。

与其他语言相比,Julia 易于使用,大幅减少了需要写的代码行数;并且能够很容易地部署于云容器,有更多的工具包和库,并且结合了多种语言的优势。据 Julia Computing 的宣传,在七项基础算法的测试中,Julia 比 Python 快 20 倍,比 R 快 100 倍,比 Matlab 快 93 倍。

那么
1、对于这事,你怎么看?真的需要一种新的编程语言吗?

2、到目前为止,全世界有多少种编程语言,你知道吗?

3、你心目中排名前3的编程语言是什么?

目录
相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深度学习基础知识:介绍深度学习的发展历程、基本概念和主要应用
深度学习基础知识:介绍深度学习的发展历程、基本概念和主要应用
32 0
|
3月前
|
机器学习/深度学习 自然语言处理 算法框架/工具
如何入门深度学习
如何入门深度学习
40 0
|
5月前
|
机器学习/深度学习 人工智能 算法
2023了,学习深度学习框架哪个比较好?
都2023年,才来回答这个问题,自然毫无悬念地选择PyTorch,TensorFlow在大模型这一波浪潮中没有起死回生,有点惋惜,现在GLM、GPT、LLaMA等各种大模型都是基于PyTorch框架构建。这个事情已经水落石出。不过呢,我觉得可以一起去回顾下,在AI框架发展的过程中,都沉陷了哪些技术点,为什么一开始这么多人在纠结到底用哪个框架。
79 0
|
7月前
|
机器学习/深度学习 存储 人工智能
基于 R 语言的深度学习——简单回归案例
基于 R 语言的深度学习——简单回归案例
172 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
基于 R 语言的深度学习——简介及资料分享
基于 R 语言的深度学习——简介及资料分享
113 0
|
机器学习/深度学习 人工智能 自然语言处理
深度学习教程 | 深度学习的实用层面
本篇讲解如何优化神经网络模型,包括Train / Dev / Test sets的切分和比例选择,Bias和Variance的相关知识,防止过拟合的方法,规范化输入以加快梯度下降速度和精度,梯度消失和梯度爆炸的原因及处理方法,梯度检查。
146 1
深度学习教程 | 深度学习的实用层面
|
机器学习/深度学习 存储 人工智能
深度学习教程 | 深度学习概论
本篇为深度学习系列教程的引言,以房价预测为例,讲解神经网络(Neural Network)模型结构和基础知识,并介绍针对监督学习的几类典型神经网络:Standard NN,CNN和RNN等知识。
166 1
深度学习教程 | 深度学习概论
|
机器学习/深度学习 自然语言处理 算法
深度学习与机器学习区别|学习笔记
快速学习深度学习与机器学习区别
深度学习与机器学习区别|学习笔记
|
机器学习/深度学习 监控 数据可视化
深度学习框架|学习笔记
快速学习深度学习框架
104 0
|
机器学习/深度学习 人工智能 自然语言处理
python深度学习:为什么要学习深度学习?
深度学习是机器学习与神经网络、人工智能、图形化建模、优化、模式识别和信号处理等技术融合后产生的一个领域。在严谨的学术期刊中,这个新兴学科的模型一直受严肃理智的学者所推崇:"深度学习网络是神经网络革命性的发展,人们甚至认为可以用它来创建更强大的预测模型。”
436 0
python深度学习:为什么要学习深度学习?
相关产品
机器翻译
推荐文章
更多