分布式工作流任务调度系统Easy Scheduler正式开源

简介: Easy Scheduler是一个分布式工作流任务调度系统,主要解决数据研发ETL错综复杂的依赖关系,而不能直观监控任务健康状态等问题。Easy Scheduler以DAG流式的方式将Task组装起来,可实时监控任务的运行状态,同时支持重试、从指定节点恢复失败、暂停及Kill任务等操作。

分布式工作流任务调度系统Easy Scheduler正式开源

License

背景

在多位技术小伙伴的努力下,经过近2年的研发迭代、内部业务剥离及重构,也经历一批种子用户试用一段时间后,EasyScheduler终于迎来了第一个正式开源发布版本 -- 1.0.0
相信做过数据处理的伙伴们对开源的调度系统如oozie、azkaban、airflow应该都不陌生,在使用这些调度系统中可能会有这样的体验:比如配置工作流任务不能可视化、任务的运行状态不能实时在线查看、
任务运行时不能暂停、不能支持参数传递、不能补数、不能多租户使用、调度系统不高可用等等问题所烦扰过。Easy Scheduler正是在这种背景下应运而生,其目标就是为使调度更加easy,更可以从其中文名“易调度”看出我们的初衷。

设计特点

Easy Scheduler是一个分布式工作流任务调度系统,主要解决数据研发ETL错综复杂的依赖关系所带来的各种问题。
其主要目标如下:

  • 以DAG图的方式将Task按照任务的依赖关系关联起来,可实时可视化监控任务的运行状态
  • 支持丰富的任务类型:Shell、MR、Spark、SQL(mysql、postgresql、hive、sparksql),Python,Sub_Process、Procedure等
  • 支持工作流定时调度、依赖调度、手动调度、手动暂停/停止/恢复,同时支持失败重试/告警、从指定节点恢复失败、Kill任务等操作
  • 支持工作流优先级、任务优先级及任务的故障转移及任务超时告警/失败
  • 支持工作流全局参数及节点自定义参数设置
  • 支持资源文件的在线上传/下载,管理等,支持在线文件创建、编辑
  • 支持任务日志在线查看及滚动、在线下载日志等
  • 实现集群HA,通过Zookeeper实现Master集群和Worker集群去中心化
  • 支持对Master/Worker cpu load,memory,cpu在线查看
  • 支持工作流运行历史树形/甘特图展示、支持任务状态统计、流程状态统计
  • 支持补数
  • 支持多租户
  • 支持国际化
  • 还有更多等待伙伴们探索

与同类调度系统的对比

调度系统对比

系统部分截图

文档

更多文档请参考 Easy Scheduler中文在线文档

感谢

Easy Scheduler使用了很多优秀的开源项目,比如google的guava、guice、grpc,netty,ali的bonecp,quartz,以及apache的众多开源项目等等,我们也非常感谢oozie、azkaban、airflow等优秀调度作品的出现带给我们的启发,
正是由于站在这些开源项目的肩膀上,才有Easy Scheduler的诞生的可能。对此我们对使用的所有开源软件表示非常的感谢!我们也希望自己不仅是开源的受益者,也能成为开源的
贡献者,于是我们决定把易调度贡献出来,并承诺长期维护。也希望对开源有同样热情和信念的伙伴加入进来,一起为开源献出一份力!

后记

Easy Scheduler于2019.03.28号正式开源后,仅仅一周时间,我们就感受到了伙伴们对Easy Scheduler的极大热情,很多伙伴提出使用反馈,还有一些伙伴是直接就找到相应的源代码来提问题或给出更好的建议、甚至直接在Easy Scheduler上撸袖子写代码,
这给我们目前的主要开发者予以极大的精神鼓舞,非常感谢伙伴们这么热情和信任我们,我们会和大家一道继续奔走在使调度系统开箱即用这条大道上,为使"数据能力平民化"添砖加瓦,为数据时代贡献自己的激情和汗水!

开源github地址:https://github.com/analysys/EasyScheduler
在线文档地址:https://analysys.github.io/easyscheduler_docs_cn/

目录
相关文章
|
26天前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
|
2月前
|
存储 运维 安全
盘古分布式存储系统的稳定性实践
本文介绍了阿里云飞天盘古分布式存储系统的稳定性实践。盘古作为阿里云的核心组件,支撑了阿里巴巴集团的众多业务,确保数据高可靠性、系统高可用性和安全生产运维是其关键目标。文章详细探讨了数据不丢不错、系统高可用性的实现方法,以及通过故障演练、自动化发布和健康检查等手段保障生产安全。总结指出,稳定性是一项系统工程,需要持续迭代演进,盘古经过十年以上的线上锤炼,积累了丰富的实践经验。
119 7
|
2月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
85 7
|
4月前
|
消息中间件 监控 数据可视化
Apache Airflow 开源最顶级的分布式工作流平台
Apache Airflow 是一个用于创作、调度和监控工作流的平台,通过将工作流定义为代码,实现更好的可维护性和协作性。Airflow 使用有向无环图(DAG)定义任务,支持动态生成、扩展和优雅的管道设计。其丰富的命令行工具和用户界面使得任务管理和监控更加便捷。适用于静态和缓慢变化的工作流,常用于数据处理。
Apache Airflow 开源最顶级的分布式工作流平台
|
3月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
194 4
|
4月前
|
存储 运维 负载均衡
构建高可用性GraphRAG系统:分布式部署与容错机制
【10月更文挑战第28天】作为一名数据科学家和系统架构师,我在构建和维护大规模分布式系统方面有着丰富的经验。最近,我负责了一个基于GraphRAG(Graph Retrieval-Augmented Generation)模型的项目,该模型用于构建一个高可用性的问答系统。在这个过程中,我深刻体会到分布式部署和容错机制的重要性。本文将详细介绍如何在生产环境中构建一个高可用性的GraphRAG系统,包括分布式部署方案、负载均衡、故障检测与恢复机制等方面的内容。
296 4
构建高可用性GraphRAG系统:分布式部署与容错机制
|
4月前
|
机器学习/深度学习 人工智能 分布式计算
【AI系统】分布式通信与 NVLink
进入大模型时代后,AI的核心转向大模型发展,训练这类模型需克服大量GPU资源及长时间的需求。面对单个GPU内存限制,跨多个GPU的分布式训练成为必要,这涉及到分布式通信和NVLink技术的应用。分布式通信允许多个节点协作完成任务,而NVLink则是一种高速、低延迟的通信技术,用于连接GPU或GPU与其它设备,以实现高性能计算。随着大模型的参数、数据规模扩大及算力需求增长,分布式并行策略,如数据并行和模型并行,变得至关重要。这些策略通过将模型或数据分割在多个GPU上处理,提高了训练效率。此外,NVLink和NVSwitch技术的持续演进,为GPU间的高效通信提供了更强的支持,推动了大模型训练的快
111 0
|
5月前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现?
消息队列系统中的确认机制在分布式系统中如何实现?
|
1月前
|
NoSQL Java 中间件
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
本文介绍了从单机锁到分布式锁的演变,重点探讨了使用Redis实现分布式锁的方法。分布式锁用于控制分布式系统中多个实例对共享资源的同步访问,需满足互斥性、可重入性、锁超时防死锁和锁释放正确防误删等特性。文章通过具体示例展示了如何利用Redis的`setnx`命令实现加锁,并分析了简化版分布式锁存在的问题,如锁超时和误删。为了解决这些问题,文中提出了设置锁过期时间和在解锁前验证持有锁的线程身份的优化方案。最后指出,尽管当前设计已解决部分问题,但仍存在进一步优化的空间,将在后续章节继续探讨。
486 131
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
|
1月前
|
NoSQL Java Redis
Springboot使用Redis实现分布式锁
通过这些步骤和示例,您可以系统地了解如何在Spring Boot中使用Redis实现分布式锁,并在实际项目中应用。希望这些内容对您的学习和工作有所帮助。
182 83

热门文章

最新文章