分布式工作流任务调度系统Easy Scheduler正式开源

简介: Easy Scheduler是一个分布式工作流任务调度系统,主要解决数据研发ETL错综复杂的依赖关系,而不能直观监控任务健康状态等问题。Easy Scheduler以DAG流式的方式将Task组装起来,可实时监控任务的运行状态,同时支持重试、从指定节点恢复失败、暂停及Kill任务等操作。

分布式工作流任务调度系统Easy Scheduler正式开源

License

背景

在多位技术小伙伴的努力下,经过近2年的研发迭代、内部业务剥离及重构,也经历一批种子用户试用一段时间后,EasyScheduler终于迎来了第一个正式开源发布版本 -- 1.0.0
相信做过数据处理的伙伴们对开源的调度系统如oozie、azkaban、airflow应该都不陌生,在使用这些调度系统中可能会有这样的体验:比如配置工作流任务不能可视化、任务的运行状态不能实时在线查看、
任务运行时不能暂停、不能支持参数传递、不能补数、不能多租户使用、调度系统不高可用等等问题所烦扰过。Easy Scheduler正是在这种背景下应运而生,其目标就是为使调度更加easy,更可以从其中文名“易调度”看出我们的初衷。

设计特点

Easy Scheduler是一个分布式工作流任务调度系统,主要解决数据研发ETL错综复杂的依赖关系所带来的各种问题。
其主要目标如下:

  • 以DAG图的方式将Task按照任务的依赖关系关联起来,可实时可视化监控任务的运行状态
  • 支持丰富的任务类型:Shell、MR、Spark、SQL(mysql、postgresql、hive、sparksql),Python,Sub_Process、Procedure等
  • 支持工作流定时调度、依赖调度、手动调度、手动暂停/停止/恢复,同时支持失败重试/告警、从指定节点恢复失败、Kill任务等操作
  • 支持工作流优先级、任务优先级及任务的故障转移及任务超时告警/失败
  • 支持工作流全局参数及节点自定义参数设置
  • 支持资源文件的在线上传/下载,管理等,支持在线文件创建、编辑
  • 支持任务日志在线查看及滚动、在线下载日志等
  • 实现集群HA,通过Zookeeper实现Master集群和Worker集群去中心化
  • 支持对Master/Worker cpu load,memory,cpu在线查看
  • 支持工作流运行历史树形/甘特图展示、支持任务状态统计、流程状态统计
  • 支持补数
  • 支持多租户
  • 支持国际化
  • 还有更多等待伙伴们探索

与同类调度系统的对比

调度系统对比

系统部分截图

文档

更多文档请参考 Easy Scheduler中文在线文档

感谢

Easy Scheduler使用了很多优秀的开源项目,比如google的guava、guice、grpc,netty,ali的bonecp,quartz,以及apache的众多开源项目等等,我们也非常感谢oozie、azkaban、airflow等优秀调度作品的出现带给我们的启发,
正是由于站在这些开源项目的肩膀上,才有Easy Scheduler的诞生的可能。对此我们对使用的所有开源软件表示非常的感谢!我们也希望自己不仅是开源的受益者,也能成为开源的
贡献者,于是我们决定把易调度贡献出来,并承诺长期维护。也希望对开源有同样热情和信念的伙伴加入进来,一起为开源献出一份力!

后记

Easy Scheduler于2019.03.28号正式开源后,仅仅一周时间,我们就感受到了伙伴们对Easy Scheduler的极大热情,很多伙伴提出使用反馈,还有一些伙伴是直接就找到相应的源代码来提问题或给出更好的建议、甚至直接在Easy Scheduler上撸袖子写代码,
这给我们目前的主要开发者予以极大的精神鼓舞,非常感谢伙伴们这么热情和信任我们,我们会和大家一道继续奔走在使调度系统开箱即用这条大道上,为使"数据能力平民化"添砖加瓦,为数据时代贡献自己的激情和汗水!

开源github地址:https://github.com/analysys/EasyScheduler
在线文档地址:https://analysys.github.io/easyscheduler_docs_cn/

目录
相关文章
|
5月前
|
Kubernetes 大数据 调度
Airflow vs Argo Workflows:分布式任务调度系统的“华山论剑”
本文对比了Apache Airflow与Argo Workflows两大分布式任务调度系统。两者均支持复杂的DAG任务编排、社区支持及任务调度功能,且具备优秀的用户界面。Airflow以Python为核心语言,适合数据科学家使用,拥有丰富的Operator库和云服务集成能力;而Argo Workflows基于Kubernetes设计,支持YAML和Python双语定义工作流,具备轻量化、高性能并发调度的优势,并通过Kubernetes的RBAC机制实现多用户隔离。在大数据和AI场景中,Airflow擅长结合云厂商服务,Argo则更适配Kubernetes生态下的深度集成。
593 34
|
10天前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
84 11
|
8天前
|
存储 算法 安全
“卧槽,系统又崩了!”——别慌,这也许是你看过最通俗易懂的分布式入门
本文深入解析分布式系统核心机制:数据分片与冗余副本实现扩展与高可用,租约、多数派及Gossip协议保障一致性与容错。探讨节点故障、网络延迟等挑战,揭示CFT/BFT容错原理,剖析规模与性能关系,为构建可靠分布式系统提供理论支撑。
82 2
|
23天前
|
机器学习/深度学习 算法 安全
新型电力系统下多分布式电源接入配电网承载力评估方法研究(Matlab代码实现)
新型电力系统下多分布式电源接入配电网承载力评估方法研究(Matlab代码实现)
|
3月前
|
数据采集 缓存 NoSQL
分布式新闻数据采集系统的同步效率优化实战
本文介绍了一个针对高频新闻站点的分布式爬虫系统优化方案。通过引入异步任务机制、本地缓存池、Redis pipeline 批量写入及身份池策略,系统采集效率提升近两倍,数据同步延迟显著降低,实现了分钟级热点追踪能力,为实时舆情监控与分析提供了高效、稳定的数据支持。
分布式新闻数据采集系统的同步效率优化实战
|
9月前
|
存储 运维 安全
盘古分布式存储系统的稳定性实践
本文介绍了阿里云飞天盘古分布式存储系统的稳定性实践。盘古作为阿里云的核心组件,支撑了阿里巴巴集团的众多业务,确保数据高可靠性、系统高可用性和安全生产运维是其关键目标。文章详细探讨了数据不丢不错、系统高可用性的实现方法,以及通过故障演练、自动化发布和健康检查等手段保障生产安全。总结指出,稳定性是一项系统工程,需要持续迭代演进,盘古经过十年以上的线上锤炼,积累了丰富的实践经验。
637 7
|
8月前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
146 0
|
9月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
279 7
|
2月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
191 2
|
2月前
|
存储 缓存 NoSQL
【📕分布式锁通关指南 12】源码剖析redisson如何利用Redis数据结构实现Semaphore和CountDownLatch
本文解析 Redisson 如何通过 Redis 实现分布式信号量(RSemaphore)与倒数闩(RCountDownLatch),利用 Lua 脚本与原子操作保障分布式环境下的同步控制,帮助开发者更好地理解其原理与应用。
103 0

热门文章

最新文章