[Python Debug]Kernel Crash While Running Neural Network with Keras|Jupyter Notebook运行Keras服务器宕机原因及解决方法

简介: [Python Debug]Kernel Crash While Running Neural Network with Keras|Jupyter Notebook运行Keras服务器宕机原因及解决方法最近做Machine Learning作业,要在Jupyter Notebook上用Keras搭建Neural Network。

[Python Debug]Kernel Crash While Running Neural Network with Keras|Jupyter Notebook运行Keras服务器宕机原因及解决方法
最近做Machine Learning作业,要在Jupyter Notebook上用Keras搭建Neural Network。结果连最简单的一层神经网络都运行不了,更奇怪的是我先用iris数据集跑了一遍并没有任何问题,但是用老师给的fashion mnist一运行服务器就提示挂掉重启。更更奇怪的是同样的code在同学的电脑上跑也是一点问题都没有,让我一度以为是我的macbook年代久远配置太低什么的,差点要买新电脑了>_<

今天上课经ML老师几番调试,竟然完美解决了,不愧是CMU大神!(这里给Prof强烈打call,虽然他看不懂中文><)因为刚学python没多久,还很不熟悉,经过这次又学会好多新技能️

出问题的完整code如下,就是用Keras实现logistic regression,是一个简单的一层网络,但是每次运行到最后一行server就挂掉,然后重启kernel。

复制代码
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA, FastICA
from sklearn.linear_model import LogisticRegression
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv2D
from keras.utils import to_categorical
from keras.datasets import fashion_mnist

(x3_train, y_train), (x3_test, y_test) = fashion_mnist.load_data()
n_classes = np.max(y_train) + 1

Vectorize image arrays, since most methods expect this format

x_train = x3_train.reshape(x3_train.shape[0], np.prod(x3_train.shape[1:]))
x_test = x3_test.reshape(x3_test.shape[0], np.prod(x3_test.shape[1:]))

Binary vector representation of targets (for one-hot or multinomial output networks)

y3_train = to_categorical(y_train)
y3_test = to_categorical(y_test)

from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.fit_transform(x_test)

n_output = y3_train.shape[1]
n_input = x_train_scaled.shape[1]

nn_lr = Sequential()
nn_lr.add(Dense(units=n_output, input_dim= n_input, activation = 'softmax'))
nn_lr.compile(optimizer = 'sgd', loss = 'categorical_crossentropy', metrics = ['accuracy'])
复制代码
由于Jupyter Notebook只是一直重启kernel,并没有任何错误提示,所以让人无从下手。但是经老师提示原来启动Jupyter Notebook时自动打开的terminal上会记录运行的信息(小白第一次发现。。),包括了kerter中止及重启的详细过程及原因:

[I 22:11:54.603 NotebookApp] Kernel interrupted: 7e7f6646-97b0-4ec7-951c-1dce783f60c4

[I 22:13:49.160 NotebookApp] Saving file at /Documents/[Rutgers]Study/2019Spring/MACHINE LEARNING W APPLCTN LARGE DATASET/hw/Untitled1.ipynb

2019-03-28 22:13:49.829246: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA

2019-03-28 22:13:49.829534: I tensorflow/core/common_runtime/process_util.cc:69] Creating new thread pool with default inter op setting: 4. Tune using inter_op_parallelism_threads for best performance.

OMP: Error #15: Initializing libiomp5.dylib, but found libiomp5.dylib already initialized.

OMP: Hint: This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/.

[I 22:13:51.049 NotebookApp] KernelRestarter: restarting kernel (1/5), keep random ports

kernel c1114f5a-3829-432f-a26a-c2db6c330352 restarted

还有另外一个方法,把代码copy到ipython中,也可以得到类似的信息,所以最后定位的错误是:

OMP: Error #15: Initializing libiomp5.dylib, but found libiomp5.dylib already initialized.

谷歌了一下,github上有一个很详细的讨论帖,但是楼主是运行XGBoost时遇到了这个问题,让我联想到寒假安装XGBoost确实经过了很曲折的过程,可能不小心把某个文件重复下载到了不同路径,于是程序加载package时出现了冲突。帖子里提供了几种可能的原因及解决方法:

  1. 卸载clang-omp

brew uninstall libiomp clang-omp

as long as u got gcc v5 from brew it come with openmp

follow steps in:
https://github.com/dmlc/xgboost/tree/master/python-package

尝试了卸载xgboost再安装,然后卸载clang-omp,得到错误提示

No such keg: /usr/local/Cellar/libiomp

pip uninstall xbgoost
pip install xgboost
brew uninstall libiomp clang-omp

  1. 直接在jupyter notebook里运行:

DANGER! DANGER!

import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
老师说这行命令可以让系统忽略package冲突的问题,自行选择一个package使用。试了一下这个方法确实有效,但这是非常危险的做法,极度不推荐!

  1. 找到重复的libiomp5.dylib文件,删除其中一个

在Finder中确实找到了两个文件,分别在~/⁨anaconda3⁩/lib⁩和~/anaconda3⁩/⁨lib⁩/⁨python3.6⁩/⁨site-packages⁩/⁨_solib_darwin⁩/⁨_U@mkl_Udarwin_S_S_Cmkl_Ulibs_Udarwin___Uexternal_Smkl_Udarwin_Slib⁩ (????)可是不太确定应该删除哪一个,感觉这种做法也蛮危险的,删错了整个跑不起来了。

  1. OpenMP冲突

Hint: This means that multiple copies of the OpenMP runtime have been linked into the program

根据提示信息里的Hint,搜了下TensorFlow OpenMP。OpenMP是一个多线程并行编程的平台,TensorFlow似乎有自己的并行计算架构,并用不上OpenMP(see https://github.com/tensorflow/tensorflow/issues/12434

  1. 卸载nomkl

I had the same error on my Mac with a python program using numpy, keras, and matplotlib. I solved it with 'conda install nomkl'.

这是最后有效的做法!nomkl全称是Math Kernel Library (MKL) Optimization,是Interl开发的用来加速数学运算的模块,通过conda安装package可以自动使用mkl,更详细的信息可以看这个Anaconda的官方文档。

To opt out, run conda install nomkl and then use conda install to install packages that would normally include MKL or depend on packages that include MKL, such as scipy, numpy, and pandas.

可能是numpy之类的package更新时出现了一些冲突,安装nomkl之后竟然神奇地解决了,后来又尝试把MKL卸载了,程序依然正常运行。。卸载命令如下:

conda remove mkl mkl-service

总结:

  1. 老师好厉害呀,三下五除二就把问题解决了><
  2. 经大神提醒,运行python之前创建一个虚拟环境可以很好避免package冲突之类的问题,具体方法:https://www.jianshu.com/p/d8e7135dca40
    原文地址https://www.cnblogs.com/sherrydatascience/p/10626474.html
相关文章
|
2月前
|
存储 数据库连接 API
Python环境变量在开发和运行Python应用程序时起着重要的作用
Python环境变量在开发和运行Python应用程序时起着重要的作用
105 15
|
25天前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
100 5
|
2月前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
21天前
|
Shell 开发工具 Python
如何在vim里直接运行python程序
如何在vim里直接运行python程序
|
2月前
|
开发者 Python
使用Python实现自动化邮件通知:当长时程序运行结束时
本文介绍了如何使用Python实现自动化邮件通知功能,当长时间运行的程序完成后自动发送邮件通知。主要内容包括:项目背景、设置SMTP服务、编写邮件发送函数、连接SMTP服务器、发送邮件及异常处理等步骤。通过这些步骤,可以有效提高工作效率,避免长时间等待程序结果。
83 9
|
3月前
|
Python
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
使用Python的socket库实现客户端到服务器端的图片传输,包括客户端和服务器端的代码实现,以及传输结果的展示。
190 3
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
|
3月前
|
Linux 区块链 Python
Python实用记录(十三):python脚本打包exe文件并运行
这篇文章介绍了如何使用PyInstaller将Python脚本打包成可执行文件(exe),并提供了详细的步骤和注意事项。
134 1
Python实用记录(十三):python脚本打包exe文件并运行
|
3月前
|
JSON 数据格式 Python
Socket学习笔记(一):python通过socket实现客户端到服务器端的文件传输
本文介绍了如何使用Python的socket模块实现客户端到服务器端的文件传输,包括客户端发送文件信息和内容,服务器端接收并保存文件的完整过程。
213 1
Socket学习笔记(一):python通过socket实现客户端到服务器端的文件传输
|
2月前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
55 3
|
3月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
592 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。