【Spark Summit East 2017】混合云上的Spark:为何安全和治理变得愈发重要?

简介: 本讲义出自Arun Murthy在Spark Summit East 2017上的演讲,主要分享了在混合云上的Spark技术飞速发展的今天,为什么安全和治理变得越来越重要。

更多精彩内容参见云栖社区大数据频道https://yq.aliyun.com/big-data;此外,通过Maxcompute及其配套产品,低廉的大数据分析仅需几步,详情访问https://www.aliyun.com/product/odps

本讲义出自Arun Murthy在Spark Summit East 2017上的演讲,主要分享了在混合云上的Spark技术飞速发展的今天,为什么安全和治理变得越来越重要。


如今很多应用一方面连接着企业自建的数据中心,另一方面连接着云平台,如此形成了混合云的架构体系,实现了公有云与私有数据中心的数据互联互通。而对于混合云上的Spark技术而言,安全和治理变得愈发重要,在Arun Murthy的分享中就以几个实际的案例进行了说明和阐述。


addcb1131665dbce833f47dbf58486cd668eae1c

810a2408950ec642ea42412cbfd9a234941f9446

dea793b5e1943e5e25e63da8a4777026b40d4ade

a606d6b7a1f998ce72676f67f6d13b79d716d2fd

3c4059a0b3880228adc314a856eaa9d0c6ea16e5

6386f10d74f996bee48d7eaa1505b34665774608

bb49d0f1d1d411a417fcece708a762664b32ab51

7214eda42c20d0f784d3f188c3fd7305ad76e3aa

07eb66d8d256d4b980629d1de36aed5fd52aee2e

48c5680efd188228d1e7188c12cd1e4ab03c30f6

47df022e2b116f627a7c431558c12249799ac46d

3daeae6edf0732fe84cf9032e8ddf54cbbf2eb0f

相关文章
|
分布式计算 监控 安全
【墨菲安全实验室】Spark(3.1.2, 3.2.1, 3.3.0版本)shell命令注入漏洞
【墨菲安全实验室】Spark(3.1.2, 3.2.1, 3.3.0版本)shell命令注入漏洞
【墨菲安全实验室】Spark(3.1.2, 3.2.1, 3.3.0版本)shell命令注入漏洞
|
机器学习/深度学习 存储 人工智能
重磅解读:基于Occlum和BigDL构建端到端的安全分布式Spark大数据分析方案
重磅解读:基于Occlum和BigDL构建端到端的安全分布式Spark大数据分析方案
1026 0
重磅解读:基于Occlum和BigDL构建端到端的安全分布式Spark大数据分析方案
|
人工智能 分布式计算 Spark
SPARK + AI SUMMIT 2020 中文精华版线上峰会材料
SPARK + AI SUMMIT 2020 中文精华版线上峰会材料
SPARK + AI SUMMIT 2020 中文精华版线上峰会材料
|
机器学习/深度学习 人工智能 分布式计算
SPARK + AI SUMMIT 2020 中文精华版线上峰会—7月5日议题
SPARK + AI SUMMIT 2020 中文精华版线上峰会—7月5日议题介绍
SPARK + AI SUMMIT 2020 中文精华版线上峰会—7月5日议题
|
分布式计算 Prometheus Kubernetes
SPARK + AI SUMMIT 2020 中文精华版线上峰会—7月4日上午议题
SPARK + AI SUMMIT 2020 中文精华版线上峰会—7月4日上午议题发布
SPARK + AI SUMMIT 2020 中文精华版线上峰会—7月4日上午议题
|
7天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
30 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
29天前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
54 0
|
29天前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
35 0
|
29天前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
71 0