消息队列常见的 5 个应用场景

简介: 一、简介消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题。实现高性能、高可用、可伸缩和最终一致性架构。

一、简介

消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题。实现高性能、高可用、可伸缩和最终一致性架构。使用较多的消息队列有ActiveMQ、RabbitMQ、ZeroMQ、Kafka、MetaMQ、RocketMQ。

二、消息队列应用场景

以下介绍消息队列在实际应用中常用的使用场景:异步处理,应用解耦,流量削锋和消息通讯四个场景。

1、异步处理

场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种:串行的方式和并行方式。

串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户。

并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间。

假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。

因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)。

小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?

引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:

按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20QPS。比串行提高了3倍,比并行提高了两倍!

2、应用解耦

场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:

传统模式的缺点:

假如库存系统无法访问,则订单减库存将失败,从而导致订单失败,订单系统与库存系统耦合。

如何解决以上问题呢?引入应用消息队列后的方案,如下图:

订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功

库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作

假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦。

3、流量削锋

流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛!

应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。

可以控制活动的人数,可以缓解短时间内高流量压垮应用。

用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面。

秒杀业务根据消息队列中的请求信息,再做后续处理。

4、日志处理

日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下:

日志采集客户端,负责日志数据采集,定时写受写入Kafka队列;Kafka消息队列,负责日志数据的接收,存储和转发;日志处理应用:订阅并消费kafka队列中的日志数据。

以下是新浪kafka日志处理应用案例:

Kafka:接收用户日志的消息队列;

Logstash:做日志解析,统一成JSON输出给Elasticsearch;

Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能;

Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。

5、消息通讯

消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。

点对点通讯:

客户端A和客户端B使用同一队列,进行消息通讯。

聊天室通讯:

客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。

以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。

三、消息中间件示例

1、电商系统

消息队列采用高可用,可持久化的消息中间件。比如Active MQ,Rabbit MQ,Rocket Mq。

应用将主干逻辑处理完成后,写入消息队列。消息发送是否成功可以开启消息的确认模式。(消息队列返回消息接收成功状态后,应用再返回,这样保障消息的完整性);

扩展流程(发短信,配送处理)订阅队列消息。采用推或拉的方式获取消息并处理;

消息将应用解耦的同时,带来了数据一致性问题,可以采用最终一致性方式解决。比如主数据写入数据库,扩展应用根据消息队列,并结合数据库方式实现基于消息队列的后续处理;

2、日志收集系统

分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。

Zookeeper注册中心,提出负载均衡和地址查找服务;

日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列;

Kafka集群:接收,路由,存储,转发等消息处理;

Storm集群:与OtherApp处于同一级别,采用拉的方式消费队列中的数据;

欢迎工作一到五年的Java工程师朋友们加入Java架构开发:744677563

本群提供免费的学习指导 架构资料 以及免费的解答

不懂得问题都可以在本群提出来 之后还会有职业生涯规划以及面试指导

相关文章
|
消息中间件 存储 JSON
消息队列的应用场景
消息队列的应用场景
136 0
|
6月前
|
消息中间件 监控 大数据
Kafka消息队列架构与应用场景探讨:面试经验与必备知识点解析
【4月更文挑战第9天】本文详尽探讨了Kafka的消息队列架构,包括Broker、Producer、Consumer、Topic和Partition等核心概念,以及消息生产和消费流程。此外,还介绍了Kafka在微服务、实时数据处理、数据管道和数据仓库等场景的应用。针对面试,文章解析了Kafka与传统消息队列的区别、实际项目挑战及解决方案,并展望了Kafka的未来发展趋势。附带Java Producer和Consumer的代码示例,帮助读者巩固技术理解,为面试做好准备。
609 0
|
5月前
|
消息中间件 存储 NoSQL
消息队列的对比及适配的应用场景
消息队列的对比及适配的应用场景
132 0
|
6月前
|
消息中间件 缓存 网络协议
消息队列的七种经典应用场景
在笔者心中,**消息队列**,**缓存**,**分库分表**是高并发解决方案三剑客。在职业生涯中,笔者曾经使用过 ActiveMQ 、RabbitMQ 、Kafka 、RocketMQ 这些知名的消息队列 。 这篇文章,笔者结合自己的真实经历,和大家分享消息队列的七种经典应用场景。
消息队列的七种经典应用场景
|
6月前
|
消息中间件 缓存 算法
消息队列进阶-1.消息队列的应用场景与选型
消息队列进阶-1.消息队列的应用场景与选型
177 0
|
消息中间件 NoSQL Java
【图解RabbitMQ-1】图解消息队列是什么玩意儿?它的应用场景有哪些?
【图解RabbitMQ-1】图解消息队列是什么玩意儿?它的应用场景有哪些?
96 0
|
消息中间件 数据采集 SQL
面试官:说出八种消息队列的应用场景。啊?八种?
本文来源于公众号:胖滚猪学编程。转载请注明出处! 一个风度翩翩,穿着格子衬衣的中年男子,拿着一个满是划痕的mac向她走来,看着铮亮的头,胖滚猪心想,这肯定是尼玛顶级架构师吧!完了要挂了。 结果面试官第一个问题,就让胖滚猪内心暗喜 面试官:消息队列这东西,你还熟悉吧?消息队列在企业中的应用场景有哪些? (这么基础的问题,手到擒来好吗?原来阿里不过如此。
面试官:说出八种消息队列的应用场景。啊?八种?
|
消息中间件 NoSQL 物联网
Redis Stream——作为消息队列的典型应用场景
Redis Stream Redis最新的大版本5.0已经RC1了,其中最重要的Feature莫过于Redis Stream了,关于Redis Stream的基本使用介绍和设计理念可以看我之前的一篇文章(Redis Stream简介)。
34984 1
|
消息中间件 NoSQL Kafka
主流的消息队列MQ比较,详解MQ的4类应用场景
消息队列已经逐渐成为企业IT系统内部通信的核心手段。它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一。
2312 0
|
消息中间件 缓存 数据库
MQ(消息队列)常见的应用场景解析
前言 提高系统性能首先考虑的是数据库的优化,之前一篇文章《数据库的使用你可能忽略了这些》中有提到过开发中,针对数据库需要注意的事项。但是数据库因为历史原因,横向扩展是一件非常复杂的工程,所有我们一般会尽量把流量都挡在数据库之前。
2076 0