【漫画】为什么MySQL数据库要用B+树存储索引?

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 小史是一个应届生,虽然学的是电子专业,但是自己业余时间看了很多互联网与编程方面的书,一心想进BAT互联网公司。话说两个多月前,小史通过了A厂的一面,两个多月后的今天,小史终于等到了A厂的二面。

小史是一个应届生,虽然学的是电子专业,但是自己业余时间看了很多互联网与编程方面的书,一心想进BAT互联网公司。

话说两个多月前,小史通过了A厂的一面,两个多月后的今天,小史终于等到了A厂的二面。

简单的自我介绍后,面试官看了看小史的简历,开始发问了。

【面试现场】

小史:没问题,这个项目前端用的react+webpack,后端用的nginx+SpringBoot+Redis+MySql,前后端分离的,最后用docker进行容器化部署。主要模块有师生系统、课程系统、成绩系统、选课系统等。

这个项目的架构和说辞,小史早已背得溜溜的。

小史:底层mysql是存储,redis是缓存,dao层操作mysql,cache层操作redis,service层处理业务逻辑,rest api层为前端提供rest接口。前端这边用react进行模块化,webpack打包部署。网关nginx进行负载均衡。mysql、redis、nginx和springboot应用都放在docker里部署。

题目:为什么MySQL数据库要用B+树存储索引?

小史听到这个题目,陷入了回忆。

【前段时间的饭局】

话说吕老师给小史讲完人工智能后,他们一起回家吃小史姐姐做的饭去了。

【饭后】

吕老师:面试的时候一定是往深了问,不精通的话容易吃亏。不过面试时一般都是根据项目来问,项目中用到的技术,一定要多看看原理,特别是能和数据结构和算法挂钩的那部分。

小史:树的话,无非就是前中后序遍历、二叉树、二叉搜索树、平衡二叉树,更高级一点的有红黑树、B树、B+树,还有之前你教我的字典树。

【红黑树】

一听到红黑树,小史头都大了,开始抱怨了起来。

小史:红黑树看过很多遍了,但是每次都记不住,它的规则实在是太多了,光定义就有四五条规则,还有插入删除的时候,需要调整树,复杂得很。

吕老师:小史,问你红黑树,并不是让你背诵它的定义,或者让你手写一个红黑树,而是想问问你它为什么这样设计,它的使用场景有哪些。

【B树】

吕老师:小史,你要知道,文件系统和数据库的索引都是存在硬盘上的,并且如果数据量大的话,不一定能一次性加载到内存中。

两个月前,小史面试没考虑内存情况差点挂了

【B+树】

吕老师:这也是和业务场景相关的,你想想,数据库中select数据,不一定只选一条,很多时候会选多条,比如按照id排序后选10条。

小史:我明白了,如果是多条的话,B树需要做局部的中序遍历,可能要跨层访问。而B+树由于所有数据都在叶子结点,不用跨层,同时由于有链表结构,只需要找到首尾,通过链表就能把所有数据取出来了。

【回到现场】

小史:这和业务场景有关。如果只选一个数据,那确实是hash更快。但是数据库中经常会选择多条,这时候由于B+树索引有序,并且又有链表相连,它的查询效率比hash就快很多了。

小史:而且数据库中的索引一般是在磁盘上,数据量大的情况可能无法一次装入内存,B+树的设计可以允许数据分批加载,同时树的高度较低,提高查找效率。

HR和小史简单地聊了聊基本情况,这次面试就结束了。

小史走后,面试官在系统中写下了面试评语:

几天后,小史收到了A厂的offer。


欢迎工作一到五年的Java工程师朋友们加入Java填坑之路:860113481
群内提供免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!
 

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
23天前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
|
1天前
|
存储 关系型数据库 MySQL
Mysql索引:深入理解InnoDb聚集索引与MyisAm非聚集索引
通过本文的介绍,希望您能深入理解InnoDB聚集索引与MyISAM非聚集索引的概念、结构和应用场景,从而在实际工作中灵活运用这些知识,优化数据库性能。
25 7
|
8天前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因?
B+树优化了数据存储和查询效率,数据仅存于叶子节点,便于区间查询和遍历,磁盘读写成本低,查询效率稳定,特别适合数据库索引及范围查询。
24 6
|
17天前
|
关系型数据库 MySQL Java
MySQL索引优化与Java应用实践
【11月更文挑战第25天】在大数据量和高并发的业务场景下,MySQL数据库的索引优化是提升查询性能的关键。本文将深入探讨MySQL索引的多种类型、优化策略及其在Java应用中的实践,通过历史背景、业务场景、底层原理的介绍,并结合Java示例代码,帮助Java架构师更好地理解并应用这些技术。
22 2
|
18天前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因
B+树相较于B树,在数据存储、磁盘读写、查询效率及范围查询方面更具优势。数据仅存于叶子节点,便于高效遍历和区间查询;内部节点不含数据,提高缓存命中率;查询路径固定,效率稳定;特别适合数据库索引使用。
25 1
|
26天前
|
数据库 索引
数据库索引
数据库索引 1、索引:建立在表一列或多列的辅助对象,目的是加快访问表的数据。 2、索引的优点: (1)、创建唯一性索引,可以确保数据的唯一性; (2)、大大加快数据检索速度; (3)、加速表与表之间的连接; (4)、在查询过程中,使用优化隐藏器,提高系统性能。 3、索引的缺点: (1)、创建和维护索引需要耗费时间,随数据量增加而增加; (2)、索引占用物理空间; (3)、对表的数据进行增删改时,索引需要动态维护,降低了数据的维护速度。
33 2
|
1月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
196 1
|
1月前
|
存储 关系型数据库 数据库
Postgres数据库BRIN索引介绍
BRIN索引是PostgreSQL提供的一种高效、轻量级的索引类型,特别适用于大规模、顺序数据的范围查询。通过存储数据块的摘要信息,BRIN索引在降低存储和维护成本的同时,提供了良好的查询性能。然而,其适用场景有限,不适合随机数据分布或频繁更新的场景。在选择索引类型时,需根据数据特性和查询需求进行权衡。希望本文对你理解和使用PostgreSQL的BRIN索引有所帮助。
35 0
|
7天前
|
SQL 关系型数据库 MySQL
MySQL导入.sql文件后数据库乱码问题
本文分析了导入.sql文件后数据库备注出现乱码的原因,包括字符集不匹配、备注内容编码问题及MySQL版本或配置问题,并提供了详细的解决步骤,如检查和统一字符集设置、修改客户端连接方式、检查MySQL配置等,确保导入过程顺利。
|
27天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
34 1