教程 | Tensorflow keras 极简神经网络构建与使用

简介: Tensorflow keras极简神经网络构建教程 Keras介绍Keras (κέρας) 在希腊语中意为号角,它来自古希腊和拉丁文学中的一个文学形象。发布于2015年,是一套高级API框架,其默认的backend是tensorflow,但是可以支持CNTK、Theano、MXNet作为backend运行。

Tensorflow keras极简神经网络构建教程

Keras介绍
Keras (κέρας) 在希腊语中意为号角,它来自古希腊和拉丁文学中的一个文学形象。发布于2015年,是一套高级API框架,其默认的backend是tensorflow,但是可以支持CNTK、Theano、MXNet作为backend运行。其特点是语法简单,容易上手,提供了大量的实验数据接口与预训练网络接口,最初是谷歌的一位工程师开发的,非常适合快速开发。Tensorflow虽然是非常流行的深度学习框架,但是tensorflow开发需要了解计算图与自动微分相关技术,对于完全没有任何深度学习基础的人不是一个很好的选择,而keras完全是为零基础的人准备,它简化了tensorflow中计算图、会话等基本概念,通过Sequential与功能API两个组件实现网络搭建,通过简单的添加一些层就可以快速搭建神经网络模型。

Mnist数据集准备
我们以mnist数据集为例,构建一个神经网络实现手写数字的训练与测试,首先我们需要认识一下mnist数据集,mnist数据集有6万张手写图像,1万张测试图像。Keras通过datase来下载与使用mnist数据集,下载与读取的代码如下:

mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) =mnist.load_data()

通过下面的代码可以显示手写数字图像:

print(train_labels[0])
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([   ])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.gray)
    plt.xlabel(str(train_labels[i]))
plt.show()

image
对数据re-scale到0~1.0之间,对标签进行了one-hot编码,代码如下:

# re-scale to 0~1.0之间
train_images = train_images / 255.0
test_images = test_images / 255.0
train_labels = one_hot(train_labels)
test_labels = one_hot(test_labels)

其中one-hot编码函数如下:

def one_hot(labels):
    onehot_labels = np.zeros(shape=[len(labels), 10])
    for i in range(len(labels)):
        index = labels[i]
        onehot_labels[i][index] = 1
    return onehot_labels

建立模型
构建神经网络

输入层为28x28=784个输入节点

隐藏层120个节点

输出层10个节点

首先需要定义模型:

model = keras.Sequential()

然后按顺序添加模型各层

model.add(keras.layers.Flatten(input_shape=(28, 28)))
model.add(keras.layers.Dense(units=120, activation=tf.nn.relu))
model.add(keras.layers.Dense(units=10, activation=tf.nn.softmax))

编译模型
模型还需要再进行几项设置才可以开始训练。这些设置会添加到模型的编译步骤:

损失函数
衡量模型在训练期间的准确率。我们希望尽可能缩小该函数,以“引导”模型朝着正确的方向优化。
优化器
根据模型看到的数据及其损失函数更新模型的方式。
指标
用于监控训练和测试步骤。以下示例使用准确率,即图像被正确分类的比例

model.compile(optimizer=tf.train.AdamOptimizer(), 
loss="categorical_crossentropy", metrics=['accuracy'])

训练模型
训练神经网络模型需要执行以下步骤:
将训练数据馈送到模型中,在本示例中为 train_images 和 train_labels 数组。
模型学习将图像与标签相关联。我们要求模型对测试集进行预测,在本示例中为 test_images 数组。我们会验证预测结果是否与 test_labels 数组中的标签一致。
要开始训练,请调用 model.fit 方法,使模型与训练数据“拟合”:

model.fit(x=train_images, y=train_labels, epochs=5)

评估模型
模型在测试集数据上运行:

test_loss, test_acc = model.evaluate(x=test_images, y=test_labels)
print("Test Accuracy %.2f"% test_acc)

使用模型进行预测

# 开始预测
cnt = 0
predictions = model.predict(test_images)
for i in range(len(test_images)):
    target = np.argmax(predictions[i])
    label = np.argmax(test_labels[i])
    if target == label:
        cnt += 1
print("correct prediction of total : %.2f"%(cnt/len(test_images)))

卷积神经网络
mnist数据转换为四维

train_images = np.expand_dims(train_images, axis=3)
test_images = np.expand_dims(test_images, axis=3)

创建模型并构建CNN各层

model = keras.Sequential()
model.add(keras.layers.Conv2D(filters=32, kernel_size=5, strides=(1, 1),
                              padding='same', activation=tf.nn.relu, input_shape=(28, 28, 1)))
model.add(keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
model.add(keras.layers.Conv2D(filters=64, kernel_size=3, strides=(1, 1),
                              padding='same', activation=tf.nn.relu))
model.add(keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
model.add(keras.layers.Dropout(0.25))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(units=128, activation=tf.nn.relu))
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(units=10, activation=tf.nn.softmax))

编译与训练模型

# 训练模型
model.compile(optimizer=tf.train.AdamOptimizer(), loss="categorical_crossentropy", metrics=['accuracy'])
model.fit(x=train_images, y=train_labels, epochs=10)

image

原文发布时间为:2018-12-9
本文作者: gloomyfish
本文来自云栖社区合作伙伴“ OpenCV学堂”,了解相关信息可以关注“CVSCHOOL”微信公众号

相关文章
|
17天前
|
存储 监控 安全
单位网络监控软件:Java 技术驱动的高效网络监管体系构建
在数字化办公时代,构建基于Java技术的单位网络监控软件至关重要。该软件能精准监管单位网络活动,保障信息安全,提升工作效率。通过网络流量监测、访问控制及连接状态监控等模块,实现高效网络监管,确保网络稳定、安全、高效运行。
46 11
|
11天前
|
数据采集 机器学习/深度学习 人工智能
基于AI的网络流量分析:构建智能化运维体系
基于AI的网络流量分析:构建智能化运维体系
72 13
|
24天前
|
云安全 人工智能 安全
|
28天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
70 3
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
110 5
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
2月前
|
存储 数据可视化 API
重磅干货,免费三方网络验证[用户系统+CDK]全套API接口分享教程。
本套网络验证系统提供全面的API接口,支持用户注册、登录、数据查询与修改、留言板管理等功能,适用于不想自建用户系统的APP开发者。系统还包含CDK管理功能,如生成、使用、查询和删除CDK等。支持高自定义性,包括20个自定义字段,满足不同需求。详细接口参数及示例请参考官方文档。
|
2月前
|
网络协议 算法 数据库
OSPF 与 BGP 的互操作性:构建复杂网络的通信桥梁
OSPF 与 BGP 的互操作性:构建复杂网络的通信桥梁
46 0
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。

热门文章

最新文章