本文转自:https://www.jianshu.com/p/dcfc0b6ae0ea
该执行逻辑是首先生成一个逻辑计划,标记是从什么数据源抽取数据
以kafka为例,在执行过程中构建kafka的offset范围,在populateStartOffsets以及constructNextBatch这两个方法中完成kafka的offset范围,接下来在runBatch中完成数据数据抽取.
基于该部分生成的DataFrame,替换最开始logicPlan中的数据源
后续基于此逻辑计划new一个IncrementalExecution形成执行计划
其中遗留一个问题是在计算过程中水印(watermark)的处理如何,我们继续分析。
在执行过程中会随着数据中的事件时更新watermark时间
在随后执行阶段,基于该watermark生成表达式,然后在输出数据时进行过滤
//statefulOperators.scala
在输出阶段,根据输出模式不同,根据watermark时间从HDFSBackedStateStoreProvider中过滤聚合后的数据,以及删除存储的一些聚合数据
本站转载已经过作者授权。任何形式的转载都请联系原作者(薛定谔的猫Plus)获得授权并注明出处。
在Struct Streaming中增加了支持sql处理流数据,在sql包中单独处理,其中StreamExecution是下面提到两处流处理的基类,这个流查询在数据源有新数据到达时会生成一个QueryExecution来执行并将结果输出到指定的Sink(处理后数据存放地)中。
MicroBatchExecution
该部分是小批量处理,默认使用ProcessingTimeExecutor这个trigger定时出发,使用的是系统时钟.
case class ProcessingTimeExecutor(processingTime: ProcessingTime, clock: Clock = new SystemClock())
extends TriggerExecutor with Logging {
private val intervalMs = processingTime.intervalMs
require(intervalMs >= 0)
override def execute(triggerHandler: () => Boolean): Unit = {
while (true) {
val triggerTimeMs = clock.getTimeMillis
val nextTriggerTimeMs = nextBatchTime(triggerTimeMs)
val terminated = !triggerHandler()
if (intervalMs > 0) {
val batchElapsedTimeMs = clock.getTimeMillis - triggerTimeMs
if (batchElapsedTimeMs > intervalMs) {
notifyBatchFallingBehind(batchElapsedTimeMs)
}
if (terminated) {
return
}
clock.waitTillTime(nextTriggerTimeMs)
} else {
if (terminated) {
return
}
}
}
}
该执行逻辑是首先生成一个逻辑计划,标记是从什么数据源抽取数据
override lazy val logicalPlan: LogicalPlan = {
assert(queryExecutionThread eq Thread.currentThread,
"logicalPlan must be initialized in QueryExecutionThread " +
s"but the current thread was ${Thread.currentThread}")
var nextSourceId = 0L
val toExecutionRelationMap = MutableMap[StreamingRelation, StreamingExecutionRelation]()
val v2ToExecutionRelationMap = MutableMap[StreamingRelationV2, StreamingExecutionRelation]()
// We transform each distinct streaming relation into a StreamingExecutionRelation, keeping a
// map as we go to ensure each identical relation gets the same StreamingExecutionRelation
// object. For each microbatch, the StreamingExecutionRelation will be replaced with a logical
// plan for the data within that batch.
// Note that we have to use the previous `output` as attributes in StreamingExecutionRelation,
// since the existing logical plan has already used those attributes. The per-microbatch
// transformation is responsible for replacing attributes with their final values.
val _logicalPlan = analyzedPlan.transform {
case streamingRelation@StreamingRelation(dataSource, _, output) =>
toExecutionRelationMap.getOrElseUpdate(streamingRelation, {
// Materialize source to avoid creating it in every batch
val metadataPath = s"$resolvedCheckpointRoot/sources/$nextSourceId"
val source = dataSource.createSource(metadataPath)
nextSourceId += 1
StreamingExecutionRelation(source, output)(sparkSession)
})
case s@StreamingRelationV2(source: MicroBatchReadSupport, _, options, output, _) =>
v2ToExecutionRelationMap.getOrElseUpdate(s, {
// Materialize source to avoid creating it in every batch
val metadataPath = s"$resolvedCheckpointRoot/sources/$nextSourceId"
val reader = source.createMicroBatchReader(
Optional.empty(), // user specified schema
metadataPath,
new DataSourceOptions(options.asJava))
nextSourceId += 1
StreamingExecutionRelation(reader, output)(sparkSession)
})
case s@StreamingRelationV2(_, sourceName, _, output, v1Relation) =>
v2ToExecutionRelationMap.getOrElseUpdate(s, {
// Materialize source to avoid creating it in every batch
val metadataPath = s"$resolvedCheckpointRoot/sources/$nextSourceId"
if (v1Relation.isEmpty) {
throw new UnsupportedOperationException(
s"Data source $sourceName does not support microbatch processing.")
}
val source = v1Relation.get.dataSource.createSource(metadataPath)
nextSourceId += 1
StreamingExecutionRelation(source, output)(sparkSession)
})
}
sources = _logicalPlan.collect { case s: StreamingExecutionRelation => s.source }
uniqueSources = sources.distinct
_logicalPlan
}
以kafka为例,在执行过程中构建kafka的offset范围,在populateStartOffsets以及constructNextBatch这两个方法中完成kafka的offset范围,接下来在runBatch中完成数据数据抽取.
newData = reportTimeTaken("getBatch") {
availableOffsets.flatMap {
case (source: Source, available)
if committedOffsets.get(source).map(_ != available).getOrElse(true) =>
val current = committedOffsets.get(source)
//这部分逻辑基于传入的起始offset范围(包含了每个partition的offset范围)形成一个kafka的DataFrame
val batch = source.getBatch(current, available)
基于该部分生成的DataFrame,替换最开始logicPlan中的数据源
val newBatchesPlan = logicalPlan transform {
case StreamingExecutionRelation(source, output) =>
newData.get(source).map { dataPlan =>
assert(output.size == dataPlan.output.size,
s"Invalid batch: ${Utils.truncatedString(output, ",")} != " +
s"${Utils.truncatedString(dataPlan.output, ",")}")
replacements ++= output.zip(dataPlan.output)
dataPlan
}.getOrElse {
LocalRelation(output, isStreaming = true)
}
}
后续基于此逻辑计划new一个IncrementalExecution形成执行计划
reportTimeTaken("queryPlanning") {
lastExecution = new IncrementalExecution(
sparkSessionToRunBatch,
triggerLogicalPlan,
outputMode,
checkpointFile("state"),
runId,
currentBatchId,
offsetSeqMetadata)
lastExecution.executedPlan // Force the lazy generation of execution plan
}
val nextBatch =
new Dataset(sparkSessionToRunBatch, lastExecution, RowEncoder(lastExecution.analyzed.schema))
接下来基于不同的sink进行处理,其中SQLExecution.withNewExecutionId主要是为了跟踪jobs的信息
reportTimeTaken("addBatch") {
SQLExecution.withNewExecutionId(sparkSessionToRunBatch, lastExecution) {
sink match {
case s: Sink =>
if (s.isInstanceOf[MemorySinkExtend]) {
s.addBatch(currentBatchId, nextBatch, batchIdOffsetMap.get(currentBatchId).getOrElse((None, None)))
} else {
s.addBatch(currentBatchId, nextBatch, (None, None))
}
case _: StreamWriteSupport =>
// This doesn't accumulate any data - it just forces execution of the microbatch writer.
nextBatch.collect()
}
}
}
其中遗留一个问题是在计算过程中水印(watermark)的处理如何,我们继续分析。
在执行过程中会随着数据中的事件时更新watermark时间
if (hasNewData) {
var batchWatermarkMs = offsetSeqMetadata.batchWatermarkMs
// Update the eventTime watermarks if we find any in the plan.
if (lastExecution != null) {
lastExecution.executedPlan.collect {
case e: EventTimeWatermarkExec => e
}.zipWithIndex.foreach {
case (e, index) if e.eventTimeStats.value.count > 0 =>
logDebug(s"Observed event time stats $index: ${e.eventTimeStats.value}")
val newWatermarkMs = e.eventTimeStats.value.max - e.delayMs
val prevWatermarkMs = watermarkMsMap.get(index)
if (prevWatermarkMs.isEmpty || newWatermarkMs > prevWatermarkMs.get) {
watermarkMsMap.put(index, newWatermarkMs)
}
在随后执行阶段,基于该watermark生成表达式,然后在输出数据时进行过滤
//statefulOperators.scala
lazy val watermarkExpression: Option[Expression] = {
WatermarkSupport.watermarkExpression(
child.output.find(_.metadata.contains(EventTimeWatermark.delayKey)),
eventTimeWatermark)
}
/** Predicate based on keys that matches data older than the watermark */
lazy val watermarkPredicateForKeys: Option[Predicate] = watermarkExpression.flatMap { e =>
if (keyExpressions.exists(_.metadata.contains(EventTimeWatermark.delayKey))) {
Some(newPredicate(e, keyExpressions))
} else {
None
}
}
/** Predicate based on the child output that matches data older than the watermark. */
lazy val watermarkPredicateForData: Option[Predicate] =
watermarkExpression.map(newPredicate(_, child.output))
在输出阶段,根据输出模式不同,根据watermark时间从HDFSBackedStateStoreProvider中过滤聚合后的数据,以及删除存储的一些聚合数据
ContinusExecution
该执行逻辑与上面类似,只是这部分在保存offset信息是异步方式,流中的数据一直在处理。