Google MapReduce到底解决什么问题?

简介:

搞架构的人,Google的架构论文是必看的,但好像大家都不愿意去啃英文论文。故把自己的读书笔记,加入自己的思考,分享给大家。

第二篇,Google MapReduce架构启示(上)。

很多时候,定义清楚问题比解决问题更难。

什么是MapReduce?

它不是一个产品,而是一种解决问题的思路,它有多个工程实现,Google在论文中也给出了它自己的工程架构实现。

MapReduce这个编程模型解决什么问题?

能够用分治法解决的问题,例如:

 ●   网页抓取
 ●   日志处理
 ●   索引倒排
 ●   查询请求汇总
 ●  

画外音:能够发现,现实中有许多基于分治的应用需求。

为什么是Google,发明了这个模型?

Google网页抓取,分析,倒排的多个应用场景,当时的技术体系,解决不了Google大数据量高并发量的需求,Google被迫进行技术创新,思考出了这个模型。

画外音:谁痛谁想办法。

为什么MapReduce对“能够用分治法解决的问题”特别有效?

分治法,是将一个大规模的问题,分解成多个小规模的问题(分),多个小规模问题解决,再统筹小问题的解(合),就能够解决大规模的问题。

画外音:分治法详见《分治法与减治法》。

Google MapReduce为什么能够成功?

Google为了方便用户使用系统,提供给了用户很少的接口,去解决复杂的问题。
(1) 
Map函数接口:处理一个基于key/value(后简称kv)的成对(pair)数据集合,同时也输出基于kv的数据集合;
(2) 
Reduce函数接口:用来合并Map输出的kv数据集合;

画外音:MapReduce系统架构,能在大规模普通PC集群上实现并行处理,和GFS等典型的互联网架构类似。

用户仅仅关注少量接口,不用关心并行、容错、数据分布、负载均衡等细节,又能够解决很多实际的问题,还有这等好事!

能不能举一个例子,说明下MapReduce的Map函数与Reduce函数是如何解决实际问题的?

举例:假设要统计大量文档中单词出现的个数

Map

输入KV:pair(文档名称,文档内容)

输出KV:pair(单词,1)

画外音:一个单词出现一次,就输出一个1。

Reduce

输入KV:pair(单词,1)

输入KV:pair(单词,总计数)

以下是一段伪代码,
Map(list<pair($doc_name, $doc_content)>){

    foreach(pair in list)

        foreach($word in $doc_content)

            echo pair($word, 1); // 输出list<k,v>

}

画外音:如果有多个Map进程,输入可以是一个pair,不是一个list。

Reduce(list<pair($word, $count)>){// 大量(单词,1)

    map<string,int> result;

    foreach(pair in list)

        result[$word] += $count;

 

    foreach($keyin result)

        echo pair($key, result[$key]); // 输出list<k,v>

}

画外音:即使有多个Reduce进程,输入也是list<pair>,因为它的输入是Map的输出。

最早在单机的体系下计算,输入数据量巨大的时候,处理很慢。如何能够在短时间内完成处理,很容易想到的思路是,将这些计算分布在成百上千的主机上,但此时,会遇到各种复杂的问题,例如:

 ●   并行计算
 ●   数据分发
 ●   错误处理
 ●   集群通讯
 ●  

这些综合到一起,就成为了一个困难的问题,这也是Google MapReduce工程架构要解决的问题,也就是下一章将要分享的问题,敬请期待。

思路比结论更重要


原文发布时间为:2018-11-29

本文作者: 58沈剑

本文来自云栖社区合作伙伴“架构师之路”,了解相关信息可以关注“架构师之路”。

相关文章
|
分布式计算
Google MapReduce到底解决什么问题?
搞架构的人,Google的架构论文是必看的,但好像大家都不愿意去啃英文论文。故把自己的读书笔记,加入自己的思考,分享给大家。
918 0
|
分布式计算 开发工具 负载均衡
Google MapReduce有啥巧妙优化?
搞架构的人,Google的架构论文是必看的,但好像大家都不愿意去啃英文论文。故把自己的读书笔记,加入自己的思考,分享给大家。
1634 0
|
分布式计算
Google MapReduce架构设计
Google MapReduce有啥巧妙优化?
818 0
|
分布式计算 Python
Google的MapReduce之python实现
使用python实现google的mapreduce计算框架,类似hadoop。
1511 0
|
8月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2776 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
8月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
105 0
|
8月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
172 0
|
8月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
315 0

热门文章

最新文章

下一篇
开通oss服务