从分治算法到 MapReduce

简介:

从分治算法说起

要说 MapReduce 就不得不说分治算法,而分治算法其实说白了,就是四个字 分而治之 。其实就是将一个复杂的问题分解成多组相同或类似的子问题,对这些子问题再分,然后再分。直到最后的子问题可以简单得求解。

要具体介绍分治算法,那就不得不说一个很经典的排序算法 -- 归并排序。这里不说它的具体算法代码,只说明它的主要思想。而归并排序的思想正是分治思想。

归并排序采用递归的方式,每次都将一个数组分解成更小的两个数组,再对这两个数组进行排序,不断递归下去。直到分解成最简单形式的两个数组的时候,再将这一个个分解后的数组进行合并。这就是归并排序。

下面有一个取自百度百科的具体例子可以看看:

1011838-20181116211517312-2140382336.jpg

我们可以看到,初始的数组是:{10,4,6,3,8,2,5,7}

第一次分解后,变成两个数组:{10,4,6,3},{8,2,5,7}

分解到最后为 5 个数组:{10},{4,6},{3,8},{2,5},{7}

然后分别合并并排序,最后排序完成:{2,3,4,5,6,7,8,10}

上述的例子这是比较简单的情况,那么我们想想看,当这个数组很大的时候又该怎么办呢?比如这个数组达到 100 GB大小,那么在一台机器上肯定是无法实现或是效率较为低下的。

那一台机器不行,那我们可以拆分到多台机器中去嘛。刚好使用分治算法将一个任务可以拆分成多个小任务,并且这多个小任务间不会相互干扰,可以独立计算。那么我们可以拆分这个数组,将这个数组拆分成 20 个块,每个的大小为 5 GB。然后将这每个 5 GB的块分散到各个不同的机器中去运行,最后再将处理的结果返回,让中央机器再进行一次完整的排序,这样无疑速度上会提升很多。

上述这个过程就是 MapReduce 的大致原理了。

函数式的 MapReduce

Map 和 Reduce 其实是函数式编程中的两个语义。Map 和循环 for 类似,只不过它有返回值。比如对一个 List 进行 Map 操作,它就会遍历 List 中的所有元素,然后根据每个元素处理后的结果返回一个新的值。下面这个例子就是利用 map 函数,将 List 中每个元素从 Int 类型 转换为 String 类型。

val a:List[Int] = List(1,2,3,4)
val b:List[String] = a.map(num => (num.toString))

而 Reduce 在函数式编程的作用则是进行数据归约。Reduce 方法需要传入两个参数,然后会递归得对每一个参数执行运算。还是用一个例子来说明:

val list:List[Int] = List(1,2,3,4,5)
//运算顺序是:1-2 = -1; -1-3 = -4; -4-4 = -8; -8-5 = -13;
//所以结果等于 -13 
list.reduce(_ - _)

谈谈 Hadoop 的 MapReduce

Hadoop MapReduce 和函数式中的 Map Reduce 还是比较类似的,只是它是一种编程模型。我们来看看 WordCount 的例子就明白了。

在这个 wordcount 程序中,MapReduce 会对输入先进行切分,这一步其实就是分治中的过程。切分后不同部分就会让不同的机器去执行 Map 操作。而后便是 Shuffle,这一阶段会将不相同的单词加到一起,最后再进行 Reduce 。

WordCount

这个 WordCount 程序是官方提供的一个简易的 Demo,更复杂的任务需要自己分解成 MapReduce 模型的代码然后执行。

所谓 MapReduce 的意思是任何的事情只要都严格遵循 Map Shuffle Reduce 三个阶段就好。其中Shuffle是系统自己提供的而Map和Reduce则用户需要写代码。

当碰到一个任务的时候,我们需要将它解析成 Map Reduce 的处理方式然后编写 MapReduce 代码来实现。我看过一个比喻很贴切,MapReduce 这个东西这就像是说我们有一把大砍刀,一个锤子。世界上的万事万物都可以先砍几刀再锤几下,就能搞定。至于刀怎么砍,锤子怎么锤,那就算个人的手艺了。

从模型的角度来看,MapReduce 是比较粗糙的,无论什么方法都只能用 Map Reduce 的方式来运行,而这种方式无疑不是万能的,很多应用场景都很难解决。而从做数据库的角度来看,这无非也就是一个 select + groupBy() 。这也就是为什么有了后面 Spark 基于 DAG 的 RDD 概念的崛起。

这里不得不多说一句,Hadoop 的文件系统 Hdfs 才是 MapReduce 的基础,因为 Map Reduce 最实质的支撑其实就是这个 Hdfs 。没有它, Map Reduce 不过是空中阁楼。你看,在 MapReduce 式微的今天,Hdfs 还不是活得好好的,Spark 或是 Hive 这些工具也都是以它为基础。不得不说,Hdfs 才牛逼啊。

为什么会出现 MapReduce

好了,接下来我们来探究一下为什么会出现 MapReduce 这个东西。

MapReduce 在 Google 最大的应用是做网页的索引。大家都知道 Google 是做搜索引擎起家的,而搜索引擎的基本原理就是索引,就是爬去互联网上的网页,然后对建立 单词->文档 的索引。这样什么搜索关键字,才能找出对应网页。这也是为什么 Google 会以 WordCount 作为 MapReduce 的例子。

既然明白搜索引擎的原理,那应该就明白自 2000 年来互联网爆发的年代,单台机器肯定是不够存储大量的索引的,所以就有了分布式存储,Google 内部用的叫 Gfs,Hadoop Hdfs 其实可以说是山寨 Gfs 来的。而在 Gfs 的基础上,MapReduce 的出现也就自然而然了。

相关文章
|
8月前
|
人工智能 自然语言处理 算法
当prompt策略遇上分治算法,南加大、微软让大模型炼成“火眼金睛”
【2月更文挑战第24天】当prompt策略遇上分治算法,南加大、微软让大模型炼成“火眼金睛”
69 2
当prompt策略遇上分治算法,南加大、微软让大模型炼成“火眼金睛”
|
9天前
|
供应链 算法
【算法】——快排,分治算法合集
本文主要介绍排序中的快排思想的应用,做到一法通万法的效果
|
6月前
|
算法 开发者 Python
惊呆了!Python算法设计与分析,分治法、贪心、动态规划...这些你都会了吗?不会?那还不快来学!
【7月更文挑战第10天】探索编程巅峰,算法至关重要。Python以其易读性成为学习算法的首选。分治法,如归并排序,将大问题拆解;贪心算法,如找零问题,每步求局部最优;动态规划,如斐波那契数列,利用子问题解。通过示例代码,理解并掌握这些算法,提升编程技能,面对挑战更加从容。动手实践,体验算法的神奇力量吧!
78 8
|
6月前
|
算法 Python
算法不再难!Python分治法、贪心、动态规划实战解析,轻松应对各种算法挑战!
【7月更文挑战第8天】掌握Python算法三剑客:分治、贪心、动态规划。分治如归并排序,将大问题拆解递归解决;贪心策略在每步选最优解,如高效找零;动态规划利用子问题解,避免重复计算,解决最长公共子序列问题。实例展示,助你轻松驾驭算法!**
78 3
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
65 2
|
8月前
|
存储 分布式计算 算法
【底层服务/编程功底系列】「大数据算法体系」带你深入分析MapReduce算法 — Shuffle的执行过程
【底层服务/编程功底系列】「大数据算法体系」带你深入分析MapReduce算法 — Shuffle的执行过程
110 0
|
5月前
|
算法 搜索推荐
算法设计 (分治法应用实验报告)基于分治法的合并排序、快速排序、最近对问题
这篇文章是关于分治法应用的实验报告,详细介绍了如何利用分治法实现合并排序和快速排序算法,并探讨了使用分治法解决二维平面上的最近对问题的方法,包括伪代码、源代码实现及时间效率分析,并附有运行结果和小结。
|
6月前
|
算法 Python
Python算法高手进阶指南:分治法、贪心算法、动态规划,掌握它们,算法难题迎刃而解!
【7月更文挑战第10天】探索Python算法的精华:分治法(如归并排序)、贪心策略(如找零钱问题)和动态规划(解复杂问题)。通过示例代码揭示它们如何优化问题解决,提升编程技能。掌握这些策略,攀登技术巅峰。
151 2
|
6月前
|
算法 程序员 Python
算法小白到大神的蜕变之路:Python分治法、贪心、动态规划,一步步带你走向算法巅峰!
【7月更文挑战第9天】探索算法之旅,以Python解锁编程高手之路。分治法如二分查找,将复杂问题拆解;贪心算法解决活动选择,每次选取局部最优;动态规划求斐波那契数列,避免重复计算,实现全局最优。每一步学习,都是编程能力的升华,助你应对复杂挑战,迈向算法大师!
52 1
|
6月前
|
存储 算法 Python
Python算法界的秘密武器:分治法巧解难题,贪心算法快速决策,动态规划优化未来!
【7月更文挑战第9天】Python中的分治、贪心和动态规划是三大关键算法。分治法将大问题分解为小问题求解,如归并排序;贪心算法每步选局部最优解,不保证全局最优,如找零钱;动态规划存储子问题解求全局最优,如斐波那契数列。选择合适算法能提升编程效率。
76 1

热门文章

最新文章