如何搭建一个用于AI预测的Python环境

简介:

2017年人工智能的火把Python烧的热血沸腾,听说很多公司因为Python开发人员需求暴涨导致的薪资上升而不得不切换到其他语言上去。PS:好像需求爆涨和薪资上升都跟我没沾上半点关系,还是苦逼一个,:)

既然如此,我们这些与AI不相干的Pythoner也来蹭一蹭Python人工智能这团火,看看能不能从中取一点暖。所以就有了这套《Python 极简入门》的文章。

没敢称之为“教程”,是因为本来就是个半吊子,然后又讲一个半吊子的东西,纯属自娱自乐,入不了专业AI人士的法眼(专业人士可以绕过了)。

又因为是半吊子讲半吊子的东西,所以整套文章不会有公式和算法的详细讲解(专业人士可以再次绕过了),我们从不生产算法,我们只是机器学习库的搬运工。

不要介意做一个调库侠,工具的发明本来就是为了降低某些操作的难度,还不是专业人士,暂且不用自己创造改造算法,轮子太多,拣着合适的用就行。废话不多说,开始~

创建一个Virtual虚拟环境

为了不与本地的Python 环境有冲突,我们使用virtualenv模块创建一个新的Python虚拟环境:

 

virtualenv python_ai

如下图所示,安装完成:

531d1453ac18ebfa524db57c7f06b9f34f4202a8

接着启动python_ai这个虚拟环境:

 

Scriptsactivate

7f32c1ccbe45e40d7b7c4afd36dd3f14bdfe0839

安装所需的模块

进入python_ai这个虚拟环境之后,我们来安装所需要的模块,其中主要有:

 ●  numpy:用于科学计算的基本模块
 ●  scipy:科学计算工具箱
 ●  pandas:数据分析和处理模块
 ●  scikit-learn:机器学习经典算法的集成包
 ●  nltk:自然语言处理模块
 ●  jieba:中文分词模块
 ●  jupyter:一个交互式的笔记本,我们的代码的主战场

其他没有列出的模块,在后面的文章中有使用时会提及大家安装。大部分模块都可以使用pip命令直接安装完成,少部分使用pip命令直接安装不了的,可以通过https://www.lfd.uci.edu/~gohlke/pythonlibs/ 网站下载模块的whl文件,再通过pip命令安装这些whl文件。

 

pip install pandas

安装pandas模块会附带安装上pandas的依赖库,其中包括Numpy等:

6b5eafc3da1ba9835f298a74821cea335dbf57da

 

pip install scikit-learn

使用pip命令也可直接安装scikit-learn:

045e4fb9ca88c37852f691d534b92b234dbc8a72

 

pip install scipy

scipy模块也能通过pip直接安装完成:

ee4d03d608f2f3574a9596c2d980c94ff02d3531

 

pip install jupyter

jupyter的依赖库很多,但也能顺利通过pip命令安装完成:

f89661276c496d2bed2a1c94f25c6928e1451238

接下来是jiaba和nltk模块,都能够顺利安装:

ed4598d244cd75ac813083d47c42dfa8d39304b9

测试模块

模块安装好之后,我们来测试一下这些模块的安装是否正确。在命令行输入命令:

 

jupyter notebook

以启动jupyter笔记本:

7fc4d8753cd645cff38a55cc4e2b655b8dd6f84d

在Home页面新建一个Python3的notebook:

99d0100707d2edeb578116ce8f189894dca6cce7

在新的notebook中导入刚刚安装好的模块,并打印其版本号:

 

import numpy as np
import pandas as pd
import scipy
import sklearn
import nltk
import jiaba
print(np.__version__)
print(pd.__version__)
print(scipy.__version__)
print(sklearn.__version__)
print(nltk.__version__)
print(jieba.__version__)

结果成功显示,没有报错:

94ce16013fbe67a2db42ceb56eba3d47da81f622

这样,我们用于Python AI预测的环境就搭建好了

下一节,我们将介绍机器学习的工作流程


原文发布时间为:2018-10-30

本文作者:州的先生

本文来自云栖社区合作伙伴“Python爱好者社区”,了解相关信息可以关注“Python爱好者社区”。

相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
249 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
4天前
|
机器学习/深度学习 数据可视化 Docker
Python环境
Python环境
17 3
|
7天前
|
人工智能 IDE 开发工具
Python AI 编程助手
Python AI 编程助手。
24 5
|
6天前
|
机器学习/深度学习 传感器 人工智能
AI与环境保护:可持续发展的伙伴
在科技日新月异的时代,人工智能(AI)不仅改变了我们的生活和工作方式,还在环保和可持续发展领域发挥重要作用。AI通过环境监测、资源优化、垃圾分类、绿色出行和环保教育等多方面的应用,为环保事业注入新活力,推动社会向更加绿色、可持续的方向发展。
|
15天前
|
人工智能 C语言 Python
AI师傅+通义灵码=零基础小白上手python真·不是梦
作为一名不懂编程的设计师,我一直渴望掌握AI辅助设计。在快刀青衣的推荐下,我尝试了AI师傅和通义灵码,成功写出了第一个Python程序,并理解了编程的基本概念。通过AI师傅的引导和通义灵码的帮助,我顺利完成了Coursera上的Python课程,获得了两张证书。这种学习方式让编程变得不再遥不可及,为我的未来学习打开了新大门。
|
14天前
|
弹性计算 Linux iOS开发
Python 虚拟环境全解:轻松管理项目依赖
本文详细介绍了 Python 虚拟环境的概念、创建和使用方法,包括 `virtualenv` 和 `venv` 的使用,以及最佳实践和注意事项。通过虚拟环境,你可以轻松管理不同项目的依赖关系,避免版本冲突,提升开发效率。
|
30天前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
50 4
|
1月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
286 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
|
1月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
348 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)

热门文章

最新文章