实时计算 Flink版产品使用问题之使用Spring Boot启动Flink处理任务时,使用Spring Boot的@Scheduled注解进行定时任务调度,出现内存占用过高,该怎么办

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:有Flink 的SqlServer 2000版本的驱动包吗?

有Flink 的SqlServer 2000版本的驱动包吗?



参考答案:

Flink提供了JDBC驱动库,这是一个Java库,用于将SQL语句连接到作为JDBC服务器的SQL网关。另外,你可能需要尝试编译Flink源码以获取需要的connector。请注意,这些步骤可能需要一些技术经验。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/585875



问题二:有没有 用 springboot 启动flink 处理 ,调度处理会内存占满情况吗?

有没有 大佬用 springboot 启动flink 处理 ,发现springboot 加 schedule调度处理会内存占满情况?



参考答案:

是的,我遇到过类似的问题。在使用Spring Boot启动Flink处理任务时,如果使用了Spring Boot的@Scheduled注解进行定时任务调度,可能会出现内存占用过高的情况。这是因为Spring Boot的@Scheduled注解会在一个新的线程中执行定时任务,而这个新的线程会持有Flink环境的引用,导致Flink环境无法被垃圾回收。

解决这个问题的方法是在定时任务中使用Flink的executeAsync方法异步执行Flink任务。这样可以确保Flink任务在新的线程中执行,而不影响主线程。同时,由于Flink任务在新的线程中执行,所以Flink环境可以被垃圾回收,从而避免了内存占用过高的问题。

以下是一个示例代码:

@Scheduled(fixedRate = 5000)
public void executeFlinkJob() {
    ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
    // 设置Flink任务的参数
    env.setParallelism(1);
    // 定义Flink任务
    DataSet<String> dataSet = env.readTextFile("path/to/your/file");
    dataSet.filter(value -> value.contains("keyword"))
            .writeAsText("path/to/output/file");
    // 异步执行Flink任务
    env.executeAsync("Flink Job Name");
}

在这个示例中,我们使用Spring Boot的@Scheduled注解设置了每5秒执行一次Flink任务。在执行Flink任务时,我们使用了executeAsync方法异步执行Flink任务,这样就可以避免内存占用过高的问题。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/585870



问题三:这个指标该怎么在flink ui上获取呢?

这个指标该怎么在flink ui上获取呢?

我想看端到端的延迟统计 找了一圈没找到这个api该怎么传参?



参考答案:

在Flink UI上获取IO指标,可以通过以下步骤进行操作:

  1. 打开Flink UI界面。通常可以通过访问http://<flink-jobmanager-host>:<flink-ui-port>来访问Flink UI,其中<flink-jobmanager-host>是Flink JobManager的主机名或IP地址,<flink-ui-port>是Flink UI的端口号。
  2. 登录到Flink UI。使用默认的用户名和密码(通常是admin)进行登录。
  3. 导航到"Jobs"页面。在左侧菜单栏中选择"Jobs"选项,可以查看当前正在运行的所有作业。
  4. 选择一个作业并点击进入详情页面。在作业详情页面中,可以看到该作业的详细信息,包括作业ID、状态、开始时间等。
  5. 在作业详情页面中,找到"Metrics"选项卡。点击该选项卡,可以查看该作业的度量指标,包括IO指标。
  6. 在"Metrics"选项卡中,找到"Input/Output"部分。这里会显示该作业的输入输出指标,包括读取的数据量、写入的数据量等。
  7. 若要查看特定任务的IO指标,可以在作业详情页面中选择该任务,然后再次点击"Metrics"选项卡。在"Input/Output"部分,可以看到该任务的输入输出指标。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/585869



问题四:Flink sql滚动窗口怎么操作能实现stream里的allowlateness?

Flink sql滚动窗口怎么操作能实现stream里的allowlateness?



参考答案:

在 Flink SQL 中,要实现滚动窗口并允许延迟(allow lateness),可以使用 ALLOW LATENESS 子句。以下是一个示例:

SELECT
  window_start,
  window_end,
  COUNT(*)
FROM
  your_table,
  LATERAL TABLE (
    SELECT
      TUMBLE_START(proctime, INTERVAL '5' SECOND) AS window_start,
      TUMBLE_END(proctime, INTERVAL '5' SECOND) AS window_end
    FROM
      your_table
    WHERE
      proctime >= TIMESTAMPADD(SECOND, -10, NOW())
  ) t
GROUP BY
  window_start,
  window_end
ORDER BY
  window_start;

在这个示例中,我们首先使用 LATERAL TABLETUMBLE 函数创建一个包含滚动窗口的表。然后,我们在查询中使用 ALLOW LATENESS 子句来允许延迟。这意味着,如果某个窗口的数据在窗口结束时间之后到达,它们将被包含在下一个窗口中。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/585863



问题五:flink-是flink 那个版本才支持的,在哪里可以查看这个信息?

flink-connector-mongodb 是flink 那个版本才支持的,在哪里可以查看这个信息?



参考答案:

1.16 看官方文档https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/connectors/table/mongodb/ 



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/585857

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
6月前
|
Java 数据库连接 测试技术
SpringBoot入门 - 添加内存数据库H2
SpringBoot入门 - 添加内存数据库H2
285 3
SpringBoot入门 - 添加内存数据库H2
|
6月前
|
Java 数据库连接 测试技术
SpringBoot入门(4) - 添加内存数据库H2
SpringBoot入门(4) - 添加内存数据库H2
95 4
SpringBoot入门(4) - 添加内存数据库H2
|
6月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
2507 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
6月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
289 56
|
4月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
331 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
5月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
7月前
|
Java 数据库连接 测试技术
SpringBoot入门(4) - 添加内存数据库H2
SpringBoot入门(4) - 添加内存数据库H2
87 2
SpringBoot入门(4) - 添加内存数据库H2
|
6月前
|
Java 数据库连接 测试技术
SpringBoot入门(4) - 添加内存数据库H2
SpringBoot入门(4) - 添加内存数据库H2
106 13
|
6月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
6月前
|
Java 数据库连接 测试技术
SpringBoot入门(4) - 添加内存数据库H2
SpringBoot入门(4) - 添加内存数据库H2
124 4

相关产品

  • 实时计算 Flink版