基于python的Scrapy爬虫框架实战

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 基于python的Scrapy爬虫框架实战2018年7月19日笔记1.伯乐在线网站页面如下图所示:网站页面.png1.1 新建爬虫工程命令:scrapy startproject BoleArticle新建爬虫工程命令命令:scrapy genspider article "blog.jobbole.com"注意:运行此命令时必须在爬虫工程文件夹内,如下图路径所示。

基于python的Scrapy爬虫框架实战


2018年7月19日笔记

1.伯乐在线

网站页面如下图所示:


网站页面.png
网站页面.png

1.1 新建爬虫工程

命令:scrapy startproject BoleArticle

新建爬虫工程命令
新建爬虫工程命令

命令: scrapy genspider article "blog.jobbole.com"
注意:运行此命令时必须在爬虫工程文件夹内,如下图路径所示。
新建爬虫文件命令
新建爬虫文件命令

1.2 编辑items.py文件

6个字段:title、publishTime、category、digest、detailUrl、img_url,数据类型为scrapy.Field对象

import scrapy
from scrapy import Field

class BolearticleItem(scrapy.Item):
    title = Field()
    publishTime = Field()
    category = Field()
    digest = Field()
    detailUrl = Field()
    img_url =Field()

1.3 编辑article.py文件

parse函数用于解析最大共有多少页,并将每一个目录页面的链接通过字符串拼接的方法传给下一级解析函数
scrapy.Request函数里面有2个参数:第1个参数数据类型是字符串,是下一级解析页面的url链接;
第2个参数数据类型是函数对象,是ArticleSpider里面函数的函数名。
parse1函数用于解析每一个目录页面的文章信息,共有6个字段:title、publishTime、category、digest、detailUrl、img_url,publishTime字段是通过正则表达式找到的,具体是使用re.search方法。其他字段通过xpath可以找到。

import scrapy
from ..items import BolearticleItem
import re

class ArticleSpider(scrapy.Spider):
    name = 'article'
    allowed_domains = ['blog.jobbole.com']
    start_urls = ['http://blog.jobbole.com/all-posts/']

    def parse(self, response):
        pageNum = response.xpath("//a[@class='page-numbers']/text()")[-1].extract()
        for i in range(1,int(pageNum)+1):
            url = "http://blog.jobbole.com/all-posts/page/{}/".format(i)
            yield scrapy.Request(url,callback=self.parse1)

    def parse1(self,response):
        def find(xpath, pNode=response):
            if len(pNode.xpath(xpath)):
                return pNode.xpath(xpath).extract()[0]
            else:
                return ''
        article_list = response.xpath("//div[@class='post floated-thumb']")
        for article in article_list:
            item = BolearticleItem()
            item['title'] = find("div[1]/a/@title",article)
            pTagStr = find("div[2]/p",article)
            item['publishTime'] = re.search("\d+/\d+/\d+",pTagStr).group(0)
            item['category'] = find("div[2]/p/a[2]/text()",article)
            item['digest'] = find("div[2]/span/p/text()",article)
            item['detailUrl'] = find("div[2]/p/a[1]/@href",article)
            item['img_url'] = find("div[1]/a/img/@src",article)
            yield item

1.4 编辑pipelines.py文件

在管道类初始化时,删除并新建表article1
下面一段代码中有2处需要修改:1.数据库名,第4行的变量database;2.数据库连接的密码,第8行的变量passwd
代码第28行变量insert_sql的数据类型是字符串,通过字符串拼接形成插入数据的sql语句。
理解变量fieldStr、valueStr形成过程的难点是字符串的join方法和推导式
每次插入数据后都执行self.conn.commit()

import pymysql
from time import time

def getConn(database ="bolearticle"):
    args = dict(
        host = 'localhost',
        user = 'root',
        passwd = '... your password',
        charset = 'utf8',
        db = database
    )
    return pymysql.connect(**args)

class BolearticlePipeline(object):
    startTime = time()
    conn = getConn()
    cursor = conn.cursor()
    drop_sql = "drop table if exists article1"
    cursor.execute(drop_sql)
    create_sql = "create table article1(title varchar(200) primary key,publishtime varchar(30)," \
                 "category varchar(30),digest varchar(500)," \
                 "detailUrl varchar(200),img_url varchar(200));"
    cursor.execute(create_sql)

    def process_item(self, item, spider):
        fieldStr = ','.join(['`%s`'%k for k in item.keys()])
        valuesStr = ','.join(['"%s"'%v for v in item.values()])
        insert_sql = "insert into article1(%s) values(%s)" %(fieldStr,valuesStr)
        self.cursor.execute(insert_sql)
        self.conn.commit()
        return item

1.5 编辑settings.py文件

关键点是最后3行要开启管道,CONCURRENT_REQUESTS变量设置为96能够较好利用多线程性能
ROBOTSTXT_OBEY设置为False,意思是不遵守爬虫协议,也称机器人协议。如果设置为True,即遵守爬虫协议,则可能访问受限。

BOT_NAME = 'BoleArticle'
SPIDER_MODULES = ['BoleArticle.spiders']
NEWSPIDER_MODULE = 'BoleArticle.spiders'
ROBOTSTXT_OBEY = False
CONCURRENT_REQUESTS = 96
ITEM_PIPELINES = {
   'BoleArticle.pipelines.BolearticlePipeline': 300,
}

1.6 运行结果

在命令行中运行命令:scrapy crawl article
查看数据库,结果截图如下:


图片.png-117.4kB
图片.png-117.4kB

2.网易新闻图片

网址:http://news.163.com/special/photo-search/#q=%E4%B8%AD%E5%9B%BD
用urllib.parse.unquote方法查看%E4%B8%AD%E5%9B%BD的中文对应字符,如下图所示:

图片.png-3.8kB
图片.png-3.8kB

网站页面如下图所示,需要爬取2400张图片:
图片.png-2954.8kB
图片.png-2954.8kB

2.1 新建爬虫工程

新建爬虫工程命令:scrapy startproject NeteasyImage
进入爬虫工程文件夹:cd .\NeteasyImage
新建爬虫文件命令:scrapy genspider image "news.163.com"

2.2 编辑items.py文件

3个字段:id、img_url、img_title

import scrapy
from scrapy import Field

class NeteasyimageItem(scrapy.Item):
    id = Field()
    img_url = Field()
    img_title = Field()

2.3 编辑image.py文件

image_number变量是下载图片的数量。
start_urls变量数据类型为列表,其中的每个元素的数据类型为字符串,是获取图片链接的请求url。
start_urls中的元素发出请求返回的内容为json类型的文本。
json.loads方法中有1个参数,参数数据类型为字符串,这个方法的作用可以把字符串转为字典,要求字符串必须以{开头,以}结束
对于下图的json文本来说,需要删除左边的var jsonres=,删除最后一个字符;
转化后的字典赋值给jsonLoad变量,jsonLoad['hits']数据类型为列表,当中有图片的链接,标题等。
id字段用来判断是第几张图。

图片.png-111.3kB
图片.png-111.3kB

import scrapy
import json
from ..items import NeteasyimageItem
class ImageSpider(scrapy.Spider):
    name = 'image'
    allowed_domains = ['netease.com']
    image_number = 2000
    urlBefore = "http://uvs.youdao.com/search?site=photogalaxy.163.com" \
                "&sort=time&channelid=&q=%E4%B8%AD%E5%9B%BD&length=100&start={}"
    start_urls = []
    for i in range(0, image_number, 100):
        start_urls.append(urlBefore.format(i))
    count = 0
    def parse(self, response):
        jsonStr = response.text.lstrip("var jsonres=").strip().strip(";")
        jsonLoad = json.loads(jsonStr)
        for image in jsonLoad['hits']:
            self.count += 1
            item = NeteasyimageItem()
            item['id'] = self.count
            item['img_title'] = image['setname']
            item['img_url'] = image['imgsrc']
            yield item

2.4 编辑settings.py文件

关键点是最后3行要开启管道,CONCURRENT_REQUESTS变量设置为96能够较好利用多线程性能
ROBOTSTXT_OBEY设置为False,意思是不遵守爬虫协议,也称机器人协议。如果设置为True,即遵守爬虫协议,则可能访问受限。

import os
BOT_NAME = 'NeteasyImage'
SPIDER_MODULES = ['NeteasyImage.spiders']
NEWSPIDER_MODULE = 'NeteasyImage.spiders'
ROBOTSTXT_OBEY = False
CONCURRENT_REQUESTS = 96
CONCURRENT_ITEMS = 200
IMAGES_STORE = os.getcwd() + '/images/'
ITEM_PIPELINES = {
   'NeteasyImage.pipelines.NeteasyimagePipeline': 300,
}

2.5 编辑pipelines.py文件

下面代码比较难懂的地方是item_completed函数中的results参数
results数据类型为列表,列表中的第一个元素为元组,元组中第一个元素result[0][0]数据类型为布尔,是下载结果是否成功。
result[0][1]是下载图片返回的一些信息,数据类型为字典,其中有3个键值对,3个键为url、path、checksum。格式如下所示。
{'url': 'http://img2.cache.netease.com/photo/0003/2016-07-18/t_BS95B1C900AJ0003.jpg', 'path':
'full/98979c89e2b5e6ef9926183dab4e8bf5a8efa8a4.jpg', 'checksum': '15d5231fcd77d81ddd58d7db6a07c1ce'}
url是下载图片的链接,path是下载图片保存的路径,checksum是下载图片的文件校验和。
用os.rename方法重命名图片文件。
from scrapy.pipelines.images import ImagesPipeline
import scrapy
from .settings import IMAGES_STORE as images_store
import os

class NeteasyimagePipeline(ImagesPipeline):
    def get_media_requests(self, item, info):
        yield scrapy.Request(item['img_url'])
    def item_completed(self, results, item, info):
        if results[0][0]:
            old_path = images_store + results[0][1]['path']
            fileName = "{}-{}.jpg".format(item['id'],item['img_title'])
            new_path = images_store + fileName
            os.rename(old_path,new_path)

2.6 运行结果

在命令行中运行命令:scrapy crawl image
查看图片保存的文件夹,如下图所示:


图片.png-641.4kB
图片.png-641.4kB
目录
相关文章
|
7天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
8天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
9天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
16天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
60 6
|
10天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
45 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
10天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
14天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
36 7
|
14天前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
14天前
|
数据采集 存储 XML
Python实现网络爬虫自动化:从基础到实践
本文将介绍如何使用Python编写网络爬虫,从最基础的请求与解析,到自动化爬取并处理复杂数据。我们将通过实例展示如何抓取网页内容、解析数据、处理图片文件等常用爬虫任务。
|
8天前
|
安全 API 网络架构
Python中哪个框架最适合做API?
本文介绍了Python生态系统中几个流行的API框架,包括Flask、FastAPI、Django Rest Framework(DRF)、Falcon和Tornado。每个框架都有其独特的优势和适用场景。Flask轻量灵活,适合小型项目;FastAPI高性能且自动生成文档,适合需要高吞吐量的API;DRF功能强大,适合复杂应用;Falcon高性能低延迟,适合快速API开发;Tornado异步非阻塞,适合高并发场景。文章通过示例代码和优缺点分析,帮助开发者根据项目需求选择合适的框架。
26 0