零基础入门学习Python爬虫必备的知识点!

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介:

关于Python有一句名言:不要重复造轮子。

但是问题有三个:

1、你不知道已经有哪些轮子已经造好了,哪个适合你用。有名有姓的的著名轮子就400多个,更别说没名没姓自己在制造中的轮子。

2、确实没重复造轮子,但是在重复制造汽车。包括好多大神写的好几百行代码,为的是解决一个Excel本身就有的成熟功能。

3、很多人是用来抓图,数据,抓点图片、视频、天气预报自娱自乐一下,然后呢?抓到大数据以后做什么用呢?比如某某啤酒卖的快,然后呢?比如某某电影票房多,然后呢?

在学习python中有任何困难不懂的可以加入我的python交流学习q u n:227-435-450,多多交流问题,互帮互助,里有不错的学习教程和开发工具。学习python有任何问题(学习方法,学习效率,如何就业),可以随时来咨询我。

我认为用Python应该能分析出来,这个现实的世界属于政治家,商业精英,艺术家,农民,而绝对不会属于Python程序员,纵使代码再精彩也没什么用。

以下是经过Python3.6.4调试通过的代码,与大家分享:

  • 抓取知乎图片
  • 听两个聊天机器人互相聊天(图灵、青云、小i)
  • AI分析唐诗的作者是李白还是杜
  • 彩票随机生成35选7
  • 自动写检讨书
  • 屏幕录相机
  • 制作Gif动图

1、抓取知乎图片,只用30行代码:

import re
from selenium import webdriver
import time
import urllib.request
driver = webdriver.Chrome()
driver.maximize_window()
driver.get("https://www.zhihu.com/question/29134042")
i = 0
while i < 10:
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(2)
try:
driver.find_element_by_css_selector('button.QuestionMainAction').click()
print("page" + str(i))
time.sleep(1)
except:
break
result_raw = driver.page_source
content_list = re.findall("img src="(.+?)" ", str(result_raw))
n = 0
while n < len(content_list):
i = time.time()
local = (r"%s.jpg" % (i))
urllib.request.urlretrieve(content_list[n], local)
print("编号:" + str(i))
n = n + 1

2、没事闲的时候,听两个聊天机器人互相聊天:

from time import sleep
import requests
s = input("请主人输入话题:")
while True:
resp = requests.post("http://www.tuling123.com/openapi/api",data={"key":"4fede3c4384846b9a7d0456a5e1e2943", "info": s, })
resp = resp.json()
sleep(1)
print('小鱼:', resp['text'])
s = resp['text']
resp = requests.get("http://api.qingyunke.com/api.php", {'key': 'free', 'appid': 0, 'msg': s})
resp.encoding = 'utf8'
resp = resp.json()
sleep(1)
print('菲菲:', resp['content'])

网上还有一个据说智商比较高的小i机器人,用爬虫的功能来实现一下:

import urllib.request
import re
while True:
x = input("主人:")
x = urllib.parse.quote(x)
link = urllib.request.urlopen(
"http://nlp.xiaoi.com/robot/webrobot?&callback=__webrobot_processMsg&data=%7B%22sessionId%22%3A%22ff725c236e5245a3ac825b2dd88a7501%22%2C%22robotId%22%3A%22webbot%22%2C%22userId%22%3A%227cd29df3450745fbbdcf1a462e6c58e6%22%2C%22body%22%3A%7B%22content%22%3A%22" + x + "%22%7D%2C%22type%22%3A%22txt%22%7D")
html_doc = link.read().decode()
reply_list = re.findall(r'"content":"(.+?)\r\n"', html_doc)
print("小i:" + reply_list[-1])

3、分析唐诗的作者是李白还是杜甫:

import jieba
from nltk.classify import NaiveBayesClassifier
# 需要提前把李白的诗收集一下,放在libai.txt文本中。
text1 = open(r"libai.txt", "rb").read()
list1 = jieba.cut(text1)
result1 = " ".join(list1)
# 需要提前把杜甫的诗收集一下,放在dufu.txt文本中。
text2 = open(r"dufu.txt", "rb").read()
list2 = jieba.cut(text2)
result2 = " ".join(list2)
# 数据准备
libai = result1
dufu = result2
# 特征提取
def word_feats(words):
return dict([(word, True) for word in words])
libai_features = [(word_feats(lb), 'lb') for lb in libai]
dufu_features = [(word_feats(df), 'df') for df in dufu]
train_set = libai_features + dufu_features
# 训练决策
classifier = NaiveBayesClassifier.train(train_set)
# 分析测试
sentence = input("请输入一句你喜欢的诗:")
print(" ")
seg_list = jieba.cut(sentence)
result1 = " ".join(seg_list)
words = result1.split(" ")
# 统计结果
lb = 0
df = 0
for word in words:
classResult = classifier.classify(word_feats(word))
if classResult == 'lb':
lb = lb + 1
if classResult == 'df':
df = df + 1
# 呈现比例
x = float(str(float(lb) / len(words)))
y = float(str(float(df) / len(words)))
print('李白的可能性:%.2f%%' % (x * 100))
print('杜甫的可能性:%.2f%%' % (y * 100))

4、彩票随机生成35选7:

import random
temp = [i + 1 for i in range(35)]
random.shuffle(temp)
i = 0
list = []
while i < 7:
list.append(temp[i])
i = i + 1
list.sort()
print('[0;31;;1m')
print(*list[0:6], end="")
print('[0;34;;1m', end=" ")
print(list[-1])

5、自动写检讨书:

import random
import xlrd
ExcelFile = xlrd.open_workbook(r'test.xlsx')
sheet = ExcelFile.sheet_by_name('Sheet1')
i = []
x = input("请输入具体事件:")
y = int(input("老师要求的字数:"))
while len(str(i)) < y * 1.2:
s = random.randint(1, 60)
rows = sheet.row_values(s)
i.append(*rows)
print(" "*8+"检讨书"+" "+"老师:")
print("我不应该" + str(x)+",", *i)
print("再次请老师原谅!")

以下是样稿:

请输入具体事件:抽烟
老师要求的字数:200
检讨书
老师:
我不应该抽烟, 学校一开学就三令五申,一再强调校规校纪,提醒学生不要违反校规,可我却没有把学校和老师的话放在心上,没有重视老师说的话,没有重视学校颁布的重要事项,当成了耳旁风,这些都是不应该的。 同时也真诚地希望老师能继续关心和支持我,并却对我的问题酌情处理。 无论在学习还是在别的方面我都会用校规来严格要求自己,我会把握这次机会。 但事实证明,仅仅是热情投入、刻苦努力、钻研学业是不够的,还要有清醒的政治头脑、大局意识和纪律观念,否则就会在学习上迷失方向,使国家和学校受损失。
再次请老师原谅!

6、屏幕录相机,抓屏软件:

from time import sleep
from PIL import ImageGrab
m = int(input("请输入想抓屏几分钟:"))
m = m * 60
n = 1
while n < m:
sleep(0.02)
im = ImageGrab.grab()
local = (r"%s.jpg" % (n))
im.save(local, 'jpeg')
n = n + 1

7、制作Gif动图:

from PIL import Image
im = Image.open("1.jpg")
images = []
images.append(Image.open('2.jpg'))
images.append(Image.open('3.jpg'))

im.save('gif.gif', save_all=True, append_images=images, loop=1, duration=1, comment=b"aaabb")

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
6天前
|
数据采集 存储 Java
如何让Python爬虫在遇到异常时继续运行
构建健壮Python爬虫涉及异常处理、代理IP和多线程。通过try/except捕获异常,保证程序在遇到问题时能继续运行。使用代理IP(如亿牛云)防止被目标网站封锁,多线程提升抓取效率。示例代码展示了如何配置代理,设置User-Agent,以及使用SQLite存储数据。通过`fetch_url`函数和`ThreadPoolExecutor`实现抓取与重试机制。
如何让Python爬虫在遇到异常时继续运行
|
15天前
|
供应链 数据挖掘 Python
后劲真大,我愿称之为学习python的“圣经”
很多小伙伴都在学习Python,但是爱看书的找不到适合自己的,这本书可以完美的解决你的问题,还能帮助到很多需要处理数据,做Excel自动方面的。 学习数据分析的好处众多,无论是对于个人职业发展还是企业的运营决策都具有重要意义。
|
1天前
|
数据采集 Web App开发 存储
Python-数据爬取(爬虫)
【7月更文挑战第24天】
24 7
|
1天前
|
数据采集 机器学习/深度学习 算法
Python-数据爬取(爬虫)
【7月更文挑战第23天】
15 5
|
1天前
|
机器学习/深度学习 数据采集 算法
Python编程语言进阶学习:深入探索与高级应用
【7月更文挑战第23天】Python的进阶学习是一个不断探索和实践的过程。通过深入学习高级数据结构、面向对象编程、并发编程、性能优化以及在实际项目中的应用,你将能够更加熟练地运用Python解决复杂问题,并在编程道路上走得更远。记住,理论知识只是基础,真正的成长来自于不断的实践和反思。
|
5天前
|
JSON 中间件 数据处理
实践出真知:通过项目学习Python Web框架的路由与中间件设计
【7月更文挑战第19天】探索Python Web开发,掌握Flask或Django的关键在于理解路由和中间件。路由连接URL与功能,如Flask中@app.route()定义请求响应路径。中间件在请求处理前后执行,提供扩展功能,如日志、认证。通过实践项目,不仅学习理论,还能提升构建高效Web应用的能力。示例代码展示路由定义及模拟中间件行为,强调动手实践的重要性。
|
13天前
|
机器学习/深度学习 数据采集 算法
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机回归模型(SVR算法)项目实战
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机回归模型(SVR算法)项目实战
|
8天前
|
机器学习/深度学习 数据采集 前端开发
网络爬虫开发:JavaScript与Python特性的小差异
我们以前写JavaScript的代码时,在遇到了发送请求时,都是需要去await的。 但是为什么Python代码不需要这样做呢? 这就是因为JavaScript是异步的,Python是同步的。 JavaScript就需要使用关键词await将异步代码块变为同步代码。
|
9天前
|
数据采集 存储 Web App开发
Python-数据爬取(爬虫)
【7月更文挑战第15天】
42 3
|
13天前
|
机器学习/深度学习 数据采集 算法
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战