跟我学Kafka源码Producer分析

简介: 我的原文博客地址是:http://flychao88.iteye.com/blog/2266611本章主要讲解分析Kafka的Producer的业务逻辑,分发逻辑和负载逻辑都在Producer中维护。

我的原文博客地址是:http://flychao88.iteye.com/blog/2266611

本章主要讲解分析Kafka的Producer的业务逻辑,分发逻辑和负载逻辑都在Producer中维护。

一、Kafka的总体结构图

(图片转发)

二、Producer源码分析

class Producer[K,V](val config: ProducerConfig,

private val eventHandler: EventHandler[K,V])  // only for unit testing

extends Logging {

private val hasShutdown = new AtomicBoolean(false)

//异步发送队列

private val queue = new LinkedBlockingQueue[KeyedMessage[K,V]](config.queueBufferingMaxMessages)

private var sync: Boolean = true

//异步处理线程

private var producerSendThread: ProducerSendThread[K,V] = null

private val lock = new Object()

//根据从配置文件中载入的信息封装成ProducerConfig类

//判断发送类型是同步,还是异步,如果是异步则启动一个异步处理线程

config.producerType match {

case "sync" =>

case "async" =>

sync = false

producerSendThread =

new ProducerSendThread[K,V]("ProducerSendThread-" + config.clientId,

queue,

ventHandler,

config.queueBufferingMaxMs,

config.batchNumMessages,

config.clientId)

producerSendThread.start()

}

private val producerTopicStats = ProducerTopicStatsRegistry.getProducerTopicStats(config.clientId)

KafkaMetricsReporter.startReporters(config.props)

AppInfo.registerInfo()

def this(config: ProducerConfig) =

this(config,

new DefaultEventHandler[K,V](config,

Utils.createObject[Partitioner](config.partitionerClass, config.props),

Utils.createObject[Encoder[V]](config.serializerClass, config.props),

Utils.createObject[Encoder[K]](config.keySerializerClass, config.props),

new ProducerPool(config)))

/**

* Sends the data, partitioned by key to the topic using either the

* synchronous or the asynchronous producer

* @param messages the producer data object that encapsulates the topic, key and message data

*/

def send(messages: KeyedMessage[K,V]*) {

lock synchronized {

if (hasShutdown.get)

throw new ProducerClosedException

recordStats(messages)

sync match {

case true => eventHandler.handle(messages)

case false => asyncSend(messages)

}

}

}

private def recordStats(messages: Seq[KeyedMessage[K,V]]) {

for (message <- messages) {

producerTopicStats.getProducerTopicStats(message.topic).messageRate.mark()

producerTopicStats.getProducerAllTopicsStats.messageRate.mark()

}

}

//异步发送流程

//将messages异步放到queue里面,等待异步线程获取

private def asyncSend(messages: Seq[KeyedMessage[K,V]]) {

for (message <- messages) {

val added = config.queueEnqueueTimeoutMs match {

case 0  =>

queue.offer(message)

case _  =>

try {

config.queueEnqueueTimeoutMs < 0 match {

case true =>

queue.put(message)

true

case _ =>

queue.offer(message, config.queueEnqueueTimeoutMs, TimeUnit.MILLISECONDS)

}

}

catch {

case e: InterruptedException =>

false

}

}

if(!added) {

producerTopicStats.getProducerTopicStats(message.topic).droppedMessageRate.mark()

producerTopicStats.getProducerAllTopicsStats.droppedMessageRate.mark()

throw new QueueFullException("Event queue is full of unsent messages, could not send event: " + message.toString)

}else {

trace("Added to send queue an event: " + message.toString)

trace("Remaining queue size: " + queue.remainingCapacity)

}

}

}

/**

* Close API to close the producer pool connections to all Kafka brokers. Also closes

* the zookeeper client connection if one exists

*/

def close() = {

lock synchronized {

val canShutdown = hasShutdown.compareAndSet(false, true)

if(canShutdown) {

info("Shutting down producer")

val startTime = System.nanoTime()

KafkaMetricsGroup.removeAllProducerMetrics(config.clientId)

if (producerSendThread != null)

producerSendThread.shutdown

eventHandler.close

info("Producer shutdown completed in " + (System.nanoTime() - startTime) / 1000000 + " ms")

}

}

}

}

说明:

上面这段代码很多方法我加了中文注释,首先要初始化一系列参数,比如异步消息队列queue,是否是同步sync,异步同步数据线程ProducerSendThread,其实重点就是ProducerSendThread这个类,从队列中取出数据并让kafka.producer.EventHandler将消息发送到broker。这个代码量不多,但是包含了很多内容,通过config.producerType判断是同步发送还是异步发送,每一种发送方式都有相关类支持,下面我们将重点介绍这二种类型。

1、同步发送

private def dispatchSerializedData(messages: Seq[KeyedMessage[K,Message]]): Seq[KeyedMessage[K, Message]] = {

//分区并且整理方法

val partitionedDataOpt = partitionAndCollate(messages)

partitionedDataOpt match {

case Some(partitionedData) =>

val failedProduceRequests = new ArrayBuffer[KeyedMessage[K,Message]]

try {

for ((brokerid, messagesPerBrokerMap) <- partitionedData) {

if (logger.isTraceEnabled)

messagesPerBrokerMap.foreach(partitionAndEvent =>

trace("Handling event for Topic: %s, Broker: %d, Partitions: %s".format(partitionAndEvent._1, brokerid, partitionAndEvent._2)))

val messageSetPerBroker = groupMessagesToSet(messagesPerBrokerMap)

val failedTopicPartitions = send(brokerid, messageSetPerBroker)

failedTopicPartitions.foreach(topicPartition => {

messagesPerBrokerMap.get(topicPartition) match {

case Some(data) => failedProduceRequests.appendAll(data)

case None => // nothing

}

})

}

} catch {

case t: Throwable => error("Failed to send messages", t)

}

failedProduceRequests

case None => // all produce requests failed

messages

}

}

说明:

这个方法主要说了二个重要信息,一个是partitionAndCollate,这个方法主要获取topic、partition和broker的,这个方法很重要,下面会进行分析。另一个重要的方法是groupMessageToSet是要对所发送数据进行压缩  设置。

在我们了解的partitionAndCollate方法之前先来了解一下如下类结构:

TopicMetadata -->PartitionMetadata

case class PartitionMetadata(partitionId: Int,

val leader: Option[Broker],

replicas: Seq[Broker],

isr: Seq[Broker] = Seq.empty,

errorCode: Short = ErrorMapping.NoError)

也就是说,Topic元数据包括了partition元数据,partition元数据中包括了partitionId,leader(leader partition在哪个broker中,备份partition在哪些broker中,以及isr有哪些等等。

def partitionAndCollate(messages: Seq[KeyedMessage[K,Message]]): Option[Map[Int, collection.mutable.Map[TopicAndPartition, Seq[KeyedMessage[K,Message]]]]] = {

val ret = new HashMap[Int, collection.mutable.Map[TopicAndPartition, Seq[KeyedMessage[K,Message]]]]

try {

for (message <- messages) {

//获取Topic的partition列表

val topicPartitionsList = getPartitionListForTopic(message)

//根据hash算法得到消息应该发往哪个分区(partition)

val partitionIndex = getPartition(message.topic, message.partitionKey, topicPartitionsList)

val brokerPartition = topicPartitionsList(partitionIndex)

// postpone the failure until the send operation, so that requests for other brokers are handled correctly

val leaderBrokerId = brokerPartition.leaderBrokerIdOpt.getOrElse(-1)

var dataPerBroker: HashMap[TopicAndPartition, Seq[KeyedMessage[K,Message]]] = null

ret.get(leaderBrokerId) match {

case Some(element) =>

dataPerBroker = element.asInstanceOf[HashMap[TopicAndPartition, Seq[KeyedMessage[K,Message]]]]

case None =>

dataPerBroker = new HashMap[TopicAndPartition, Seq[KeyedMessage[K,Message]]]

ret.put(leaderBrokerId, dataPerBroker)

}

val topicAndPartition = TopicAndPartition(message.topic, brokerPartition.partitionId)

var dataPerTopicPartition: ArrayBuffer[KeyedMessage[K,Message]] = null

dataPerBroker.get(topicAndPartition) match {

case Some(element) =>

dataPerTopicPartition = element.asInstanceOf[ArrayBuffer[KeyedMessage[K,Message]]]

case None =>

dataPerTopicPartition = new ArrayBuffer[KeyedMessage[K,Message]]

dataPerBroker.put(topicAndPartition, dataPerTopicPartition)

}

dataPerTopicPartition.append(message)

}

Some(ret)

}catch {    // Swallow recoverable exceptions and return None so that they can be retried.

case ute: UnknownTopicOrPartitionException => warn("Failed to collate messages by topic,partition due to: " + ute.getMessage); None

case lnae: LeaderNotAvailableException => warn("Failed to collate messages by topic,partition due to: " + lnae.getMessage); None

case oe: Throwable => error("Failed to collate messages by topic, partition due to: " + oe.getMessage); None

}

}

说明:

调用partitionAndCollate根据topics的messages进行分组操作,messages分配给dataPerBroker(多个不同的Broker的Map),根据不同Broker调用不同的SyncProducer.send批量发送消息数据,SyncProducer包装了nio网络操作信息。

partitionAndCollate这个方法的主要作用是:获取所有partitions的leader所在leaderBrokerId(就是在该partiionid的leader分布在哪个broker上),创建一个HashMap>>>,把messages按照brokerId分组组装数据,然后为SyncProducer分别发送消息作准备工作。

我们进入getPartitionListForTopic这个方法看一下,这个方法主要是干什么的。

private def getPartitionListForTopic(m: KeyedMessage[K,Message]): Seq[PartitionAndLeader] = {

val topicPartitionsList = brokerPartitionInfo.getBrokerPartitionInfo(m.topic, correlationId.getAndIncrement)

debug("Broker partitions registered for topic: %s are %s"

.format(m.topic, topicPartitionsList.map(p => p.partitionId).mkString(",")))

val totalNumPartitions = topicPartitionsList.length

if(totalNumPartitions == 0)

throw new NoBrokersForPartitionException("Partition key = " + m.key)

topicPartitionsList

}

说明:这个方法看上去没什么,主要是getBrokerPartitionInfo这个方法,其中KeyedMessage这个就是我们要发送的消息,返回值是Seq[PartitionAndLeader]。

def getBrokerPartitionInfo(topic: String, correlationId: Int): Seq[PartitionAndLeader] = {

debug("Getting broker partition info for topic %s".format(topic))

// check if the cache has metadata for this topic

val topicMetadata = topicPartitionInfo.get(topic)

val metadata: TopicMetadata =

topicMetadata match {

case Some(m) => m

case None =>

// refresh the topic metadata cache

updateInfo(Set(topic), correlationId)

val topicMetadata = topicPartitionInfo.get(topic)

topicMetadata match {

case Some(m) => m

case None => throw new KafkaException("Failed to fetch topic metadata for topic: " + topic)

}

}

val partitionMetadata = metadata.partitionsMetadata

if(partitionMetadata.size == 0) {

if(metadata.errorCode != ErrorMapping.NoError) {

throw new KafkaException(ErrorMapping.exceptionFor(metadata.errorCode))

} else {

throw new KafkaException("Topic metadata %s has empty partition metadata and no error code".format(metadata))

}

}

partitionMetadata.map { m =>

m.leader match {

case Some(leader) =>

debug("Partition [%s,%d] has leader %d".format(topic, m.partitionId, leader.id))

new PartitionAndLeader(topic, m.partitionId, Some(leader.id))

case None =>

debug("Partition [%s,%d] does not have a leader yet".format(topic, m.partitionId))

new PartitionAndLeader(topic, m.partitionId, None)

}

}.sortWith((s, t) => s.partitionId < t.partitionId)

}

说明:

这个方法很重要,首先看一下topicPartitionInfo这个对象,这个一个HashMap结构:HashMap[String, TopicMetadata] key是topic名称,value是topic元数据。

通过这个hash结构获取topic元数据,做match匹配,如果有数据(Some(m))则赋值给metadata,如果没有,也就是None的时候,则通过nio远程连到服务端更新topic信息。

请看如下流程图:

目录
相关文章
|
1月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
39 4
|
1月前
|
消息中间件 存储 分布式计算
大数据-53 Kafka 基本架构核心概念 Producer Consumer Broker Topic Partition Offset 基础概念了解
大数据-53 Kafka 基本架构核心概念 Producer Consumer Broker Topic Partition Offset 基础概念了解
67 4
|
1月前
|
消息中间件 druid 大数据
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
33 2
|
1月前
|
消息中间件 分布式计算 druid
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
56 1
|
1月前
|
消息中间件 分布式计算 Kafka
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
56 0
|
1月前
|
消息中间件 druid Kafka
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
78 0
|
2月前
|
数据采集 消息中间件 存储
实时数据处理的终极武器:Databricks与Confluent联手打造数据采集与分析的全新篇章!
【9月更文挑战第3天】本文介绍如何结合Databricks与Confluent实现高效实时数据处理。Databricks基于Apache Spark提供简便的大数据处理方式,Confluent则以Kafka为核心,助力实时数据传输。文章详细阐述了利用Kafka进行数据采集,通过Delta Lake存储并导入数据,最终在Databricks上完成数据分析的全流程,展示了一套完整的实时数据处理方案。
70 3
|
3月前
|
消息中间件 监控 算法
Kafka Producer 的性能优化技巧
【8月更文第29天】Apache Kafka 是一个分布式流处理平台,它以其高吞吐量、低延迟和可扩展性而闻名。对于 Kafka Producer 来说,正确的配置和编程实践可以显著提高其性能。本文将探讨一些关键的优化策略,并提供相应的代码示例。
146 1
|
3月前
|
开发者 图形学 前端开发
绝招放送:彻底解锁Unity UI系统奥秘,五大步骤教你如何缔造令人惊叹的沉浸式游戏体验,从Canvas到动画,一步一个脚印走向大师级UI设计
【8月更文挑战第31天】随着游戏开发技术的进步,UI成为提升游戏体验的关键。本文探讨如何利用Unity的UI系统创建美观且功能丰富的界面,包括Canvas、UI元素及Event System的使用,并通过具体示例代码展示按钮点击事件及淡入淡出动画的实现过程,助力开发者打造沉浸式的游戏体验。
101 0
下一篇
无影云桌面