【Tensorflow+keras】Keras API两种训练GAN网络的方式

简介: 使用Keras API以两种不同方式训练条件生成对抗网络(CGAN)的示例代码:一种是使用train_on_batch方法,另一种是使用tf.GradientTape进行自定义训练循环。

1 第一种 train_on_batch

(1)简介
github:https://github.com/eriklindernoren/Keras-GAN/tree/master/cgan
运行一批样品的单次梯度更新。该方法搭配keras的sequential API使用。
其他网络结构参考Keras API三种搭建神经网络的方式及以mnist举例实现
(2)举例实现

from __future__ import print_function, division
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply
from tensorflow.keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.layers import UpSampling2D, Conv2D
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
import numpy as np
class CGAN():
    def __init__(self):
        # Input shape
        self.img_rows = 28
        self.img_cols = 28
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols, self.channels)
        self.num_classes = 10
        self.latent_dim = 100
        optimizer = Adam(0.0002, 0.5)
        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss=['binary_crossentropy'],
            optimizer=optimizer,
            metrics=['accuracy'])
        # Build the generator
        self.generator = self.build_generator()
        # The generator takes noise and the target label as input
        # and generates the corresponding digit of that label
        noise = Input(shape=(self.latent_dim,))
        label = Input(shape=(1,))
        img = self.generator([noise, label])
        # For the combined model we will only train the generator
        self.discriminator.trainable = False
        # The discriminator takes generated image as input and determines validity
        # and the label of that image
        valid = self.discriminator([img, label])
        # The combined model  (stacked generator and discriminator)
        # Trains generator to fool discriminator
        self.combined = Model([noise, label], valid)
        self.combined.compile(loss=['binary_crossentropy'],
            optimizer=optimizer)
    def build_generator(self):
        model = Sequential()
        model.add(Dense(256, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))
        model.summary()
        noise = Input(shape=(self.latent_dim,))
        label = Input(shape=(1,), dtype='int32')
        label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label))
        model_input = multiply([noise, label_embedding])
        img = model(model_input)
        return Model([noise, label], img)
    def build_discriminator(self):
        model = Sequential()
        model.add(Dense(512, input_dim=np.prod(self.img_shape)))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.4))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.4))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()
        img = Input(shape=self.img_shape)
        label = Input(shape=(1,), dtype='int32')
        label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label))
        flat_img = Flatten()(img)
        model_input = multiply([flat_img, label_embedding])
        validity = model(model_input)
        return Model([img, label], validity)
    def train(self, epochs, batch_size=128, sample_interval=50):
        # Load the dataset
        (X_train, y_train), (_, _) = mnist.load_data()
        # Configure input
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = np.expand_dims(X_train, axis=3)
        y_train = y_train.reshape(-1, 1)
        # Adversarial ground truths
        valid = np.ones((batch_size, 1))
        fake = np.zeros((batch_size, 1))
        for epoch in range(epochs):
            # ---------------------
            #  Train Discriminator
            # ---------------------
            # Select a random half batch of images
            idx = np.random.randint(0, X_train.shape[0], batch_size)
            imgs, labels = X_train[idx], y_train[idx]
            # Sample noise as generator input
            noise = np.random.normal(0, 1, (batch_size, 100))
            # Generate a half batch of new images
            gen_imgs = self.generator.predict([noise, labels])
            # Train the discriminator
            d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid)
            #train_on_batch返回值 为长度为2的列表, d_loss_real[0]为loss, d_loss_real[1]为accuracy
            d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], fake)
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
            # ---------------------
            #  Train Generator
            # ---------------------
            # Condition on labels
            sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1)
            # Train the generator
            g_loss = self.combined.train_on_batch([noise, sampled_labels], valid)
            # Plot the progress
            print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
            # If at save interval => save generated image samples
            if epoch % sample_interval == 0:
                self.sample_images(epoch)
    def sample_images(self, epoch):
        r, c = 2, 5
        noise = np.random.normal(0, 1, (r * c, 100))
        sampled_labels = np.arange(0, 10).reshape(-1, 1)
        gen_imgs = self.generator.predict([noise, sampled_labels])
        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5
        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
                axs[i,j].set_title("Digit: %d" % sampled_labels[cnt])
                axs[i,j].axis('off')
                cnt += 1
        fig.savefig("images/%d.png" % epoch)
        plt.close()
if __name__ == '__main__':
    cgan = CGAN()
    cgan.train(epochs=1000, batch_size=32, sample_interval=200)

2 第二种 tf.GradientTape()

参考:https://www.tensorflow.org/guide/keras/customizing_what_happens_in_fit
(1)搭建网络

from tensorflow.keras import layers
# Create the discriminator
discriminator = keras.Sequential(
    [
        keras.Input(shape=(28, 28, 1)),
        layers.Conv2D(64, (3, 3), strides=(2, 2), padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Conv2D(128, (3, 3), strides=(2, 2), padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.GlobalMaxPooling2D(),
        layers.Dense(1),
    ],
    name="discriminator",
)
# Create the generator
latent_dim = 128
generator = keras.Sequential(
    [
        keras.Input(shape=(latent_dim,)),
        # We want to generate 128 coefficients to reshape into a 7x7x128 map
        layers.Dense(7 * 7 * 128),
        layers.LeakyReLU(alpha=0.2),
        layers.Reshape((7, 7, 128)),
        layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Conv2D(1, (7, 7), padding="same", activation="sigmoid"),
    ],
    name="generator",
)
#训练网络
class GAN(keras.Model):
    def __init__(self, discriminator, generator, latent_dim):
        super(GAN, self).__init__()
        self.discriminator = discriminator
        self.generator = generator
        self.latent_dim = latent_dim
    def compile(self, d_optimizer, g_optimizer, loss_fn):
        super(GAN, self).compile()
        self.d_optimizer = d_optimizer
        self.g_optimizer = g_optimizer
        self.loss_fn = loss_fn
    def train_step(self, real_images):
        if isinstance(real_images, tuple):
            real_images = real_images[0]
        # Sample random points in the latent space
        batch_size = tf.shape(real_images)[0]
        random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))
        # Decode them to fake images
        generated_images = self.generator(random_latent_vectors)
        # Combine them with real images
        combined_images = tf.concat([generated_images, real_images], axis=0)
        # Assemble labels discriminating real from fake images
        labels = tf.concat(
            [tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))], axis=0
        )
        # Add random noise to the labels - important trick!
        labels += 0.05 * tf.random.uniform(tf.shape(labels))
        # Train the discriminator
        with tf.GradientTape() as tape:
            predictions = self.discriminator(combined_images)
            d_loss = self.loss_fn(labels, predictions)
        grads = tape.gradient(d_loss, self.discriminator.trainable_weights)
        self.d_optimizer.apply_gradients(
            zip(grads, self.discriminator.trainable_weights)
        )
        # Sample random points in the latent space
        random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))
        # Assemble labels that say "all real images"
        misleading_labels = tf.zeros((batch_size, 1))
        # Train the generator (note that we should *not* update the weights
        # of the discriminator)!
        with tf.GradientTape() as tape:
            predictions = self.discriminator(self.generator(random_latent_vectors))
            g_loss = self.loss_fn(misleading_labels, predictions)
        grads = tape.gradient(g_loss, self.generator.trainable_weights)
        self.g_optimizer.apply_gradients(zip(grads, self.generator.trainable_weights))
        return {"d_loss": d_loss, "g_loss": g_loss}
#测试网络
batch_size = 64
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
all_digits = np.concatenate([x_train, x_test])
all_digits = all_digits.astype("float32") / 255.0
all_digits = np.reshape(all_digits, (-1, 28, 28, 1))
dataset = tf.data.Dataset.from_tensor_slices(all_digits)
dataset = dataset.shuffle(buffer_size=1024).batch(batch_size)
gan = GAN(discriminator=discriminator, generator=generator, latent_dim=latent_dim)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
    loss_fn=keras.losses.BinaryCrossentropy(from_logits=True),
)
目录
相关文章
|
2月前
|
机器学习/深度学习 存储 算法
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
反向传播算法虽是深度学习基石,但面临内存消耗大和并行扩展受限的问题。近期,牛津大学等机构提出NoProp方法,通过扩散模型概念,将训练重塑为分层去噪任务,无需全局前向或反向传播。NoProp包含三种变体(DT、CT、FM),具备低内存占用与高效训练优势,在CIFAR-10等数据集上达到与传统方法相当的性能。其层间解耦特性支持分布式并行训练,为无梯度深度学习提供了新方向。
116 1
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
|
2月前
|
存储 网络协议 API
Cpp网络编程Winsock API
本文详细介绍了使用Winsock API进行C++网络编程的过程,通过具体实例实现了一个基于TCP协议的C/S架构通信demo。文章从服务端与客户端两方面展开,涵盖网络库初始化、套接字创建、绑定IP与端口、监听与连接、数据收发到关闭连接等关键步骤。重点解析了`WSAStartup`、`socket`、`bind`、`listen`、`accept`、`connect`、`send`和`recv`等函数的使用方法及注意事项,并对比了标准库与Winsock库在链接时的区别。适合初学者了解Winsock网络编程基础。
150 35
|
8月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
175 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
2月前
|
人工智能 运维 安全
网络安全公司推荐:F5荣膺IDC全球Web应用与API防护领导者
网络安全公司推荐:F5荣膺IDC全球Web应用与API防护领导者
69 4
|
8月前
|
数据采集 TensorFlow 算法框架/工具
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
本教程详细介绍了如何使用TensorFlow 2.3训练自定义图像分类数据集,涵盖数据集收集、整理、划分及模型训练与测试全过程。提供完整代码示例及图形界面应用开发指导,适合初学者快速上手。[教程链接](https://www.bilibili.com/video/BV1rX4y1A7N8/),配套视频更易理解。
184 0
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
|
4月前
|
机器学习/深度学习 文件存储 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
454 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
|
4月前
|
机器学习/深度学习 数据可视化 API
DeepSeek生成对抗网络(GAN)的训练与应用
生成对抗网络(GANs)是深度学习的重要技术,能生成逼真的图像、音频和文本数据。通过生成器和判别器的对抗训练,GANs实现高质量数据生成。DeepSeek提供强大工具和API,简化GAN的训练与应用。本文介绍如何使用DeepSeek构建、训练GAN,并通过代码示例帮助掌握相关技巧,涵盖模型定义、训练过程及图像生成等环节。
|
4月前
|
机器学习/深度学习 文件存储 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
83 1
|
4月前
|
缓存 小程序 API
微信小程序网络请求与API调用:实现数据交互
本文深入探讨了微信小程序的网络请求与API调用,涵盖`wx.request`的基本用法、常见场景(如获取数据、提交表单、上传和下载文件)及注意事项(如域名配置、HTTPS协议、超时设置和并发限制)。通过一个简单案例,演示了如何实现小程序与服务器的数据交互。掌握这些技能将帮助你构建功能更丰富的应用。
|
6月前
|
Kubernetes 安全 Devops
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
190 10
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙

热门文章

最新文章