利用MaxCompute内建函数及UDTF转换json格式日志数据

简介: 本文介绍了如何使用MaxCompute UDF对JSON格式的日志进行信息提取和转换。
+关注继续查看

一、业务场景分析:

由于业务的复杂性,数据开发者需要面对不同来源的不同类型数据,需要把这些数据抽取到数据平台,按照设计好的数据模型对关键业务字段进行抽取,形成一张二维表,以便后续在大数据平台/数据仓库中进行统计分析、关联计算。

本文结合一个具体的案例来介绍如何使用MaxCompute对json格式的日志数据进行转换处理。

1.数据来源:应用实时写入ECS主机的指定目录下的日志文件中;

2.数据格式:日志文件中,每条日志的格式如下图所示(示例中对数据进行了简化和脱敏),每一条日志中包含了设备信息,以及1个或多个Session信息,且每条日志中的Session数量是动态的:1个或多个Session。每条日志的内容示例如下:

1975d5bf9da1ca01f06c090833d312dd46d41696

3.数据处理需求:采集日志数据,对日志数据进行解析、转换,对转换后的日志数据在MaxCompute进行统计分析。由于日志数据是json格式的,其中包含了多个业务字段信息,需要将业务字段提前出来,才能在MaxCompute进行后续的业务统计(如进行按照时段进行PV/UV统计、按照设备类型进行统计、关联设备ID与会员信息进行统计等),所以本文的关键需求就是如何把json格式数据的关键信息解析为一张包含业务字段的二维表。

二、解决方案:

本文的解决方案中,选择使用阿里云的日志服务+MaxCompute产品组合来满足以上业务需求,其中日志服务仅仅完成日志采集和投递的职能,不做数据解析和转化工作。

1.日志采集:通过日志服务获取日志数据到logstore(这部分内容可参考日志服务帮助文档)58fd3efbab724e7e4b123109a2d9e944d4d71b91

2.通过日志服务的投递功能(帮助文档)将日志定时投递归档到MaxCompute的1张原始日志表,其中每条日志所有信息都写入到原始日志表的1个字段content中。

e381b2b726115b320116cb3a9da2fbd6d4b09326

3.利用MaxCompute对原始数据进行字段解析和提取。

1)利用内建函数get_json_object进行数据提取

select
get_json_object(content,'$.DeviceID') as DeviceID,
get_json_object(content,'$.UniqueIdentifier') as UniqueIdentifier,
get_json_object(content,'$.GameID') as GameID,
get_json_object(content,'$.Device') as Device,
get_json_object(content,'$.Sessions\[0].SessionID') as Session1_ID,
get_json_object(content,'$.Sessions\[0].Events\[0].Name') as Session1_EventName,
get_json_object(content,'$.Sessions\[1].SessionID') as Session2_ID,
get_json_object(content,'$.Sessions\[1].Events\[0].Name') as Session2_EventName
from log_target_json where pt='20180725' limit 10

提取的结果如下:

36f79492550a87845e50180ae9896ae8f6f080d0

方案总结:以上处理逻辑,是把一条日志的业务字段分别提取成为行字段,适合每个json记录中的信息固定且可以映射为表字段,例如上面的例子,把session1和session2的信息提取出来后,分别看做不同的列字段来处理。但如果每条日志记录包含的session数量是动态不固定的时候,这种处理逻辑就难以满足需要,例如下一条日志就包含了3个session,如果要提取每个session的信息,就要求解析的SQL增加Session3_ID, Session3_EventName逻辑,如果再下一条日志包含100个session呢?这种提取方式就很难处理了。

155533412bd56a44a6e3f055927ec8abcf1db6a4

这种情况,可以使用UDTF自定义函数来实现。

2)开发MaxCompute UDTF函数,对日志进行处理

根据数据特点,1条日志包含了多个session信息,属于1:N的关系,转换到数据仓库的二维表时,需要解析到最小粒度的session信息,把1行转成N行,提取所有session信息。业务目标如下所示:

bc8ec1ae61a9953f12d83b933d0d0342c7113d31

在MaxCompute中,对1行记录处理转换为多行记录需要使用UDTF来实现。

我们这里以JAVA UDTF为例,对content字段中的每条json记录进行解析,获取并返回需要提取的业务字段。这里的UDTF的处理逻辑会深入到json的第3级,循环解析出最小粒度的数据并返回多条记录。


package com.aliyun.odps;

import com.aliyun.odps.udf.UDFException;
import com.aliyun.odps.udf.UDTF;
import com.aliyun.odps.udf.annotation.Resolve;
import com.google.gson.Gson;

import java.io.IOException;
import java.util.List;
import java.util.Map;

@Resolve("string->string,string,string,string,string,string,string,string")
public class get_json_udtf extends UDTF {
    @Override
    public void process(Object[] objects) throws UDFException, IOException {
        String input = (String) objects[0];
        Map map = new Gson().fromJson(input, Map.class);

        Object deviceID = map.get("DeviceID");
        Object uniqueIdentifier = map.get("UniqueIdentifier");
        Object gameID = map.get("GameID");
        Object device = map.get("Device");

        List sessions = (List) map.get("Sessions");
        for (Object session : sessions) {
            Map sMap = (Map) session;
            Object sessionID = sMap.get("SessionID");
            List events = (List) sMap.get("Events");
            for (Object event : events) {
                String name = (String) ((Map) event).get("Name");
                String timestamp = (String) ((Map) event).get("Timestamp");
                String networkStatus = (String) ((Map) event).get("NetworkStatus");
                forward(deviceID, uniqueIdentifier,gameID,device,
                        sessionID,name,timestamp,networkStatus);
            }
        }
    }
}

注:关于UDF本身编写、打包上传、创建Function等知识请参阅官方文档https://help.aliyun.com/document_detail/27867.html。
程序编写完毕后,需要打包、上传UDTF并创建UDF函数:
对编译好的程序进行打包处理,生成jar包,在MaxCompute客户端(odpscmd)中,上传这个资源:
add jar maxcompute_demo-1.0-SNAPSHOT.jar -f;
然后通过命令行创建function:
create function get_json_udtf as com.aliyun.odps.get_json_udtf using maxcompute_demo-1.0-SNAPSHOT.jar';
创建后查看函数:
61b835bda61bca19230f38c6e335c23357d91adc
测试验证:
对包含原始日志的表进行查询,使用创建的get_json_udtf对content字段进行查询:30a15e6aadd76e9996edeb747f93b04fb15b5574
查询结果如下,UDFT函数对每条json记录进行处理,生成了多条记录,符合预期:03cbcc1cf7b051055a8a4b2c5b5c338781c4d441 
同时,如需要固化处理逻辑,还可以使用insert into语法,将解析后的结果查询到一张新表,通过作业调度来实现周期性的数据转换。


三、总结:

本文通过一个日志分析的大数据分析场景,通过一个常见的json日志处理的需求为例,介绍了通过日志服务采集日志到MaxCompute,同时使用MaxCompute的内建函数/UDF等方式,对json格式的日志数据进行解析和转换,提取关键业务字段、生成了可用于后续分析的日志表。

相关实践学习
简单用户画像分析
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4月前
|
存储 数据采集 XML
大数据数据采集的数据来源的日志数据之搜索类数据
在大数据领域,数据采集是一个非常重要的环节。日志数据已经成为了大数据应用中不可或缺的一部分,尤其是搜索类数据。本文将介绍搜索类日志数据作为数据来源的特点以及其采集流程。
65 0
|
4月前
|
存储 数据采集 NoSQL
大数据数据采集的数据来源的日志数据之埋点访问数据
在大数据采集中,埋点访问数据是一种常见的日志数据类型。本文将介绍什么是埋点访问数据以及如何高效地从该类型的数据中采集和处理数据。
60 0
|
10月前
|
分布式计算 MaxCompute
《零基础实现Flume收集网站日志数据到MaxCompute》电子版地址
零基础实现Flume收集网站日志数据到MaxCompute
48 0
《零基础实现Flume收集网站日志数据到MaxCompute》电子版地址
|
10月前
|
消息中间件 分布式计算 监控
日志数据如何同步到 MaxCompute | 学习笔记(二)
快速学习日志数据如何同步到 MaxCompute
119 0
日志数据如何同步到 MaxCompute | 学习笔记(二)
|
10月前
|
消息中间件 存储 数据采集
日志数据如何同步到 MaxCompute | 学习笔记(一)
快速学习日志数据如何同步到 MaxCompute
126 0
日志数据如何同步到 MaxCompute | 学习笔记(一)
|
10月前
|
消息中间件 存储 数据采集
日志数据如何同步到 MaxCompute | 学习笔记
快速学习日志数据如何同步到 MaxCompute,介绍了日志数据如何同步到 MaxCompute 系统机制, 以及在实际应用过程中如何使用。
258 0
日志数据如何同步到 MaxCompute | 学习笔记
|
10月前
|
存储 分布式计算 监控
日志投递 MaxCompute | 学习笔记
快速学习日志投递MaxCompute
63 0
日志投递 MaxCompute | 学习笔记
|
11月前
|
大数据 Shell
|
存储 SQL 数据采集
日志数据投递到MaxCompute最佳实践
日志服务采集到日志后,有时需要将日志投递至MaxCompute的表中进行存储与分析。本文主要向用户介绍将数据投递到MaxCompute完整流程,方便用户快速实现数据投递至MaxCompute。
|
存储 弹性计算 分布式计算
【云栖号案例 | 互联网】墨迹天气上云 分析日志大数据 洞察用户需求
墨迹天气运营团队数据分析成本高、网络带宽不足急需解决。迁移MaxCompute后,优化流程,工作效率提升5倍以上,更节省存储空间,性能和稳定性有很大提升。
【云栖号案例 | 互联网】墨迹天气上云 分析日志大数据 洞察用户需求
相关产品
云原生大数据计算服务 MaxCompute
推荐文章
更多