TensorFlow-Slim image classification library:TensorFlow-Slim 图像分类库

简介: TensorFlow-Slim 图像分类库TF-slim是用于定义,训练和评估复杂模型的TensorFlow(tensorflow.contrib.slim)的新型轻量级高级API。

TensorFlow-Slim 图像分类库

TF-slim是用于定义,训练和评估复杂模型的TensorFlow(tensorflow.contrib.slim)的新型轻量级高级API。 该目录包含用于训练和评估使用TF-slim的几种广泛使用的卷积神经网络(CNN)图像分类模型的代码。 它包含脚本,允许您从头开始训练模型或从预训练的网络权重微调它们。 它还包含用于下载标准图像数据集的代码,将其转换为TensorFlow 的原生 TFRecord 格式,并使用 TF-Slim 的数据读取和序列实用程序进行读取。 您可以轻松地对任何这些数据集上的任何模型进行训练,如下所示。 我们还包括一个jupyter notebook,它提供了如何使用TF-Slim进行图像分类的工作示例。

TF-slim is a new lightweight high-level API of TensorFlow (tensorflow.contrib.slim) for defining, training and evaluating complex models. This directory contains code for training and evaluating several widely used Convolutional Neural Network (CNN) image classification models using TF-slim. It contains scripts that will allow you to train models from scratch or fine-tune them from pre-trained network weights. It also contains code for downloading standard image datasets, converting them to TensorFlow’s native TFRecord format and reading them in using TF-Slim’s data reading and queueing utilities. You can easily train any model on any of these datasets, as we demonstrate below. We’ve also included a jupyter notebook, which provides working examples of how to use TF-Slim for image classification.

项目地址:https://github.com/tensorflow/models/tree/master/slim
tensorflownews
http://www.tensorflownews.com

目录
相关文章
|
8月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
|
3月前
|
数据采集 TensorFlow 算法框架/工具
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
本教程详细介绍了如何使用TensorFlow 2.3训练自定义图像分类数据集,涵盖数据集收集、整理、划分及模型训练与测试全过程。提供完整代码示例及图形界面应用开发指导,适合初学者快速上手。[教程链接](https://www.bilibili.com/video/BV1rX4y1A7N8/),配套视频更易理解。
67 0
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
67 3
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
利用TensorFlow实现简单的图像分类模型
利用TensorFlow实现简单的图像分类模型
61 0
|
3月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用TensorFlow构建一个简单的图像分类模型
【10月更文挑战第18天】使用TensorFlow构建一个简单的图像分类模型
108 1
|
3月前
|
机器学习/深度学习 TensorFlow API
使用 TensorFlow 和 Keras 构建图像分类器
【10月更文挑战第2天】使用 TensorFlow 和 Keras 构建图像分类器
|
5月前
|
并行计算 TensorFlow 算法框架/工具
【Tensorflow】解决 Could not load dynamic library ‘libcudart.so.10.1‘; dlerror: libcudart.so.10.1
原因是CUDA10.1不支持Tensorflow2.2+。那就使用Tensorflow2.0。
123 2
|
5月前
|
并行计算 Linux TensorFlow
【Deepin 20系统+Tensorflow 2】Linux系统解决Could not load dynamic library ‘libcudart.so.10.0‘
本文描述了在Deepin 20系统中使用TensorFlow 2时遇到GPU未被利用的问题,并给出了相关的调试日志信息。
58 2
|
5月前
|
机器学习/深度学习 监控 数据可视化
|
6月前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。