Improved IDF2JSON

简介:

The last version eliminated all comments because they are not needed in the JSON format. But the comments can be used as properties. So, I did some modifications. Since I am not familiar with Fortran. All the work is done with Python by replacing characters to change the structure. The results are shown below:

{

"_Version": "8.8",

"_Timestep": "4",

"_Building": {

" Name": "Simple One Zone w Windows",

" North Axis (deg)": "0",

" Terrain": "Suburbs",

" Loads Convergence Tolerance Value": "0.04",

" Temperature Convergence Tolerance Value (deltaC)": "0.004",

" Solar Distribution": "MinimalShadowing",

" Maximum Number of Warmup Days": "30",

" Minimum Number of Warmup Days": "6"

},

"_HeatBalanceAlgorithm": "ConductionTransferFunction",

"_SurfaceConvectionAlgorithm___Inside": "TARP",

"_SurfaceConvectionAlgorithm___Outside": "DOE-2",

"_SimulationControl": {

" Do Zone Sizing Calculation": "No",

" Do System Sizing Calculation": "No",

" Do Plant Sizing Calculation": "No",

" Run Simulation for Sizing Periods": "Yes",

" Run Simulation for Weather File Run Periods": "No"

},

"_RunPeriod": {

" Name": "Null",

" Begin Month": "1",

" Begin Day of Month": "1",

" End Month": "12",

" End Day of Month": "31",

" Day of Week for Start Day": "Tuesday",

" Use Weather File Holidays and Special Days": "Yes",

" Use Weather File Daylight Saving Period": "Yes",

" Apply Weekend Holiday Rule": "No",

" Use Weather File Rain Indicators": "Yes",

" Use Weather File Snow Indicators": "Yes"

},

"_Site___Location": {

" Name": "Denver Stapleton Intl Arpt CO USA WMO=724690",

" Latitude (deg)": "39.77",

" Longitude (deg)": "-104.87",

" Time Zone (hr)": "-7.00",

" Elevation (m)": "1611.00"

},

"_SizingPeriod___DesignDay": {

" Name": "Denver Stapleton Intl Arpt Ann Clg 1% Condns DB=>MWB",

" Month": "7",

" Day of Month": "21",

" Day Type": "SummerDesignDay",

" Maximum Dry-Bulb Temperature (C)": "32.6",

" Daily Dry-Bulb Temperature Range (deltaC)": "15.2",

" Dry-Bulb Temperature Range Modifier Type": "Null",

" Dry-Bulb Temperature Range Modifier Day Schedule Name": "Null",

" Humidity Condition Type": "Wetbulb",

" Wetbulb or DewPoint at Maximum Dry-Bulb (C)": "15.6",

" Humidity Condition Day Schedule Name": "Null",

" Humidity Ratio at Maximum Dry-Bulb (kgWater/kgDryAir)": "Null",

" Enthalpy at Maximum Dry-Bulb (J/kg)": "Null",

" Daily Wet-Bulb Temperature Range (deltaC)": "Null",

" Barometric Pressure (Pa)": "83411.",

" Wind Speed (m/s)": "4",

" Wind Direction (deg)": "120",

" Rain Indicator": "No",

" Snow Indicator": "No",

" Daylight Saving Time Indicator": "No",

" Solar Model Indicator": "ASHRAEClearSky",

" Beam Solar Day Schedule Name": "Null",

" Diffuse Solar Day Schedule Name": "Null",

" ASHRAE Clear Sky Optical Depth for Beam Irradiance (taub) (dimensionless)": "Null",

" ASHRAE Clear Sky Optical Depth for Diffuse Irradiance (taud) (dimensionless)": "Null",

" Sky Clearness": "1.00"

},

"_Material___NoMass": {

" Name": "R31LAYER",

" Roughness": "Rough",

" Thermal Resistance (m2-K/W)": "5.456",

" Thermal Absorptance": "0.9000000",

" Solar Absorptance": "0.7500000",

" Visible Absorptance": "0.7500000"

},

"_Material": {

" Name": "C5 - 4 IN HW CONCRETE",

" Roughness": "MediumRough",

" Thickness (m)": "0.1014984",

" Conductivity (W/m-K)": "1.729577",

" Density (kg/m3)": "2242.585",

" Specific Heat (J/kg-K)": "836.8000",

" Thermal Absorptance": "0.9000000",

" Solar Absorptance": "0.6500000",

" Visible Absorptance": "0.6500000"

},

"_Construction": {

" Name": "ROOF31",

" Outside Layer": "R31LAYER"

},

"_Construction___WindowDataFile": {

" Name": "DoubleClear",

" File Name": "..BACKSLASHdatasetsBACKSLASHWindow5DataFile.dat"

},

"_Site___GroundTemperature___BuildingSurface": "18.89,18.92,19.02,19.12,19.21,19.23,19.07,19.32,19.09,19.21,19.13,18.96",

"_Zone": {

" Name": "ZONE ONE",

" Direction of Relative North (deg)": "0",

" X Origin (m)": "0",

" Y Origin (m)": "0",

" Z Origin (m)": "0",

" Type": "1",

" Multiplier": "1",

" Ceiling Height (m)": "autocalculate",

" Volume (m3)": "autocalculate"

},

"_ScheduleTypeLimits": {

" Name": "Fraction",

" Lower Limit Value": "0.0",

" Upper Limit Value": "1.0",

" Numeric Type": "CONTINUOUS"

},

"_GlobalGeometryRules": {

" Starting Vertex Position": "UpperLeftCorner",

" Vertex Entry Direction": "CounterClockWise",

" Coordinate System": "World"

},

"_BuildingSurface___Detailed": {

" Name": "Zn001___Roof001",

" Surface Type": "Roof",

" Construction Name": "ROOF31",

" Zone Name": "ZONE ONE",

" Outside Boundary Condition": "Outdoors",

" Outside Boundary Condition Object": "Null",

" Sun Exposure": "SunExposed",

" Wind Exposure": "WindExposed",

" View Factor to Ground": "0",

" Number of Vertices": "4",

" X,Y,Z ==> Vertex 1 (m)": "0.000000,15.24000,4.572",

" X,Y,Z ==> Vertex 2 (m)": "0.000000,0.000000,4.572",

" X,Y,Z ==> Vertex 3 (m)": "15.24000,0.000000,4.572",

" X,Y,Z ==> Vertex 4 (m)": "15.24000,15.24000,4.572"

},

"_FenestrationSurface___Detailed": {

" Name": "Zn001_Wall001_Win001",

" Surface Type": "Window",

" Construction Name": "DoubleClear",

" Building Surface Name": "Zn001___Wall001",

" Outside Boundary Condition Object": "Null",

" View Factor to Ground": "0.5000000",

" Shading Control Name": "Null",

" Frame and Divider Name": "Null",

" Multiplier": "1.0",

" Number of Vertices": "4",

" X,Y,Z ==> Vertex 1 (m)": "0.548000,0,2.5000",

" X,Y,Z ==> Vertex 2 (m)": "0.548000,0,0.5000",

" X,Y,Z ==> Vertex 3 (m)": "5.548000,0,0.5000",

" X,Y,Z ==> Vertex 4 (m)": "5.548000,0,2.5000"

},

"_Output___Variable": "ZN001___WALL001___WIN001,Surface Outside Face Temperature,timestep",

"_Output___VariableDictionary": "Regular",

"_Output___Surfaces___Drawing": "dxf",

"_Output___Surfaces___List": "details",

"_Output___Constructions": "Constructions",

"_Output___Meter___MeterFileOnly": "EnergyTransfer___Facility,hourly",

"_OutputControl___Table___Style": {

" Column Separator": "HTML"

},

"_Output___Table___SummaryReports": {

" Report 1 Name": "AllSummary"

}

}

目录
相关文章
|
1月前
|
机器学习/深度学习 自然语言处理 算法
【论文精读】ACL 2022:Graph Pre-training for AMR Parsing and Generation
【论文精读】ACL 2022:Graph Pre-training for AMR Parsing and Generation
|
JSON 数据格式 Python
Python json中一直搞不清的load、loads、dump、dumps、eval
Python json中一直搞不清的load、loads、dump、dumps、eval
309 0
Python json中一直搞不清的load、loads、dump、dumps、eval
|
10月前
|
自然语言处理 算法 vr&ar
X-GEAR:Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction
我们提出了一项利用多语言预训练生成语言模型进行零样本跨语言事件论元抽取(EAE)的研究。通过将EAE定义为语言生成任务,我们的方法有效地编码事件结构并捕获论元之间的依赖关系。
85 0
|
10月前
|
机器学习/深度学习 数据采集 自然语言处理
MEE: A Novel Multilingual Event Extraction Dataset 论文解读
事件抽取(EE)是信息抽取(IE)的基本任务之一,旨在从文本中识别事件提及及其论点(即参与者)。由于其重要性,已经为事件抽取开发了广泛的方法和资源。
105 0
|
10月前
|
机器学习/深度学习 自然语言处理 测试技术
Query and Extract Refining Event Extraction as Type-oriented Binary Decoding 论文解读
事件抽取通常被建模为一个多分类问题,其中事件类型和论元角色被视为原子符号。这些方法通常仅限于一组预定义的类型。
42 0
|
10月前
|
机器学习/深度学习 自然语言处理 数据可视化
EventGraph:Event Extraction as Semantic Graph Parsing 论文解读
事件抽取涉及到事件触发词和相应事件论元的检测和抽取。现有系统经常将事件抽取分解为多个子任务,而不考虑它们之间可能的交互。
57 0
|
10月前
|
机器学习/深度学习 自然语言处理 搜索推荐
TSAR: A Two-Stream AMR-enhanced Model for Document-level Event Argument Extraction论文解读
以往的研究大多致力于从单个句子中抽取事件,而文档级别的事件抽取仍未得到充分的研究。在本文中,我们专注于从整个文档中抽取事件论元
131 0
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
One SPRING to Rule Them Both Symmetric AMR Semantic Parsing and Generation without Complex Pipeline
在文本到AMR解析中,当前最先进的语义解析器集成了几个不同模块或组件的繁琐管道,并利用图重新分类,即在训练集的基础上开发的一组特定内容的启发式方法。
103 0
|
机器学习/深度学习 人工智能 数据可视化
【文章阅读】Frustratingly Simple Few-Shot Object Detection
从几个例子中检测稀有物体是一个新出现的问题。先前的研究表明,元学习是一种很有前途的方法。但是,微调技术几乎没有引起人们的注意。我们发现,仅对稀有类现有检测器的最后一层进行微调对于少镜头目标检测任务是至关重要的。在当前的基准测试中,这种简单的方法比元学习方法高出大约2~20个百分点,有时甚至会使以前的方法的准确率翻一番。
161 0
|
算法 计算机视觉 C++
翻译:Selective Search for Object Detection
在这篇指导,我们将会理解一个在目标检测中的重要概念——Selective Search。我们也会在 C++ 的和 Python 上分享 OpenCV 代码。
107 0

热门文章

最新文章