关于感受野的总结

简介: SIGAI特邀作者:mileistone 原创声明:本文为SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。 感受野是卷积神经网络里面最重要的概念之一,为了更好地理解卷积神经网络结构,甚至自己设计卷积神经网络,对于感受野的理解是必备的。

感受野是卷积神经网络里面最重要的概念之一,为了更好地理解卷积神经网络结构,甚至自己设计卷积神经网络,对于感受野的理解必不可少。

一、定义

感受野被定义为卷积神经网络特征所能看到输入图像的区域,换句话说特征输出受感受野区域内的像素点的影响。

比如下图(该图为了方便,将二维简化为一维),这个三层的神经卷积神经网络,每一层卷积核的 kernel\_size=3stride=1 ,那么最上层特征所对应的感受野就为如图所示的7x7。

感受野示例[1]


二、计算方式

RF_{l+1}=RF_{l}+(kernel\_size_{l+1}-1)\times feature\_stride_{l}

其中 RF 表示特征感受野大小, l 表示层数, feature\_stride_l=\prod_{i=1}^{l}stride_il=0 表示输入层, RF_{0}=1 , feature\_stride_0=1 。

  • 第一层特征,感受野为3

RF_{1}=RF_{0}+(kernel\_size_{1}-1)\times feature\_stride_{0}=1+(3-1)\times 1=3

第1层感受野[1]
  • 第二层特征,感受野为5

RF_{2}=RF_{1}+(kernel\_size_{2}-1)\times feature\_stride_{1}=3+(3-1)\times 1=5

第2层感受野[1]
  • 第三层特征,感受野为7

RF_{3}=RF_{2}+(kernel\_size_{3}-1)\times feature\_stride_{2}=5+(3-1)\times 1=7

第3层感受野[1]

如果有dilated conv的话,计算公式为

RF_{l+1}=RF_{l}+(kernel\_size_{l+1}-1)\times feature\_stride_{l}\times (dilation_{l+1})

三、更上一层楼

上文所述的是理论感受野,而特征的有效感受野(实际起作用的感受野)实际上是远小于理论感受野的,如下图所示。具体数学分析比较复杂,不再赘述,感兴趣的话可以参考论文[2]。

有效感受野示例[2]

下面我从直观上解释一下有效感受野背后的原因。以一个两层 kernel\_size=3, stride=1的网络为例,该网络的理论感受野为5,计算流程可以参加下图。其中 x 为输入, w 为卷积权重, o 为经过卷积后的输出特征。

很容易可以发现, x_{1,1} 只影响第一层feature map中的 o_{1,1}^1 ;而 x_{3,3} 会影响第一层feature map中的所有特征,即 o_{1,1}^1,o_{1,2}^1,o_{1,3}^1,o_{2,1}^1,o_{2,2}^1,o_{2,3}^1,o_{3,1}^1,o_{3,2}^1,o_{3,3}^1 。

第一层的输出全部会影响第二层的 o_{1,1}^2 。

于是 x_{1,1} 只能通过 o_{1,1}^1 来影响 o_{1,1}^2 ;而 x_{3,3} 能通过 o_{1,1}^1,o_{1,2}^1,o_{1,3}^1,o_{2,1}^1,o_{2,2}^1,o_{2,3}^1,o_{3,1}^1,o_{3,2}^1,o_{3,3}^1 来影响 o_{1,1}^2 。显而易见,虽然 x_{1,1} 和 x_{3,3} 都位于第二层特征感受野内,但是二者对最后的特征 o_{1,1}^2 的影响却大不相同,输入中越靠感受野中间的元素对特征的贡献越大。

两层3x3 conv计算流程图

四、应用

  • 分类

Xudong Cao写过一篇叫《A practical theory for designing very deep convolutional neural networks》的technical report,里面讲设计基于深度卷积神经网络的图像分类器时,为了保证得到不错的效果,需要满足两个条件:

Firstly, for each convolutional layer, its capacity of learning more complex patterns should be guaranteed; Secondly,  the receptive field of the top most layer should be no larger than the image region.

其中第二个条件就是对卷积神经网络最高层网络特征感受野大小的限制。

  • 目标检测

现在流行的目标检测网络大部分都是基于anchor的,比如SSD系列,v2以后的yolo,还有faster rcnn系列。

基于anchor的目标检测网络会预设一组大小不同的anchor,比如32x32、64x64、128x128、256x256,这么多anchor,我们应该放置在哪几层比较合适呢?这个时候感受野的大小是一个重要的考虑因素。

放置anchor层的特征感受野应该跟anchor大小相匹配,感受野比anchor大太多不好,小太多也不好。如果感受野比anchor小很多,就好比只给你一只脚,让你说出这是什么鸟一样。如果感受野比anchor大很多,则好比给你一张世界地图,让你指出故宫在哪儿一样。

《S3FD: Single Shot Scale-invariant Face Detector》这篇人脸检测器论文就是依据感受野来设计anchor的大小的一个例子,文中的原话是

we design anchor scales based on  the effective receptive field

《FaceBoxes: A CPU Real-time Face Detector with High Accuracy》这篇论文在设计多尺度anchor的时候,依据同样是感受野,文章的一个贡献为

We introduce the Multiple Scale Convolutional Layers
(MSCL) to handle various scales of face via  enriching
receptive fields and discretizing anchors over layers

引用:

[1]convolutional nerual networks

[2]Understanding the Effective Receptive Field in Deep Convolutional Neural Networks


推荐阅读:

关注SIGAICN公众号,回复文章获取码,即可获得全文链接

[1] 机器学习-波澜壮阔40年 【获取码】SIGAI0413.

[2] 学好机器学习需要哪些数学知识?【获取码】SIGAI0417.

[3] 人脸识别算法演化史 【获取码】SIGAI0420.

[4] 基于深度学习的目标检测算法综述 【获取码】SIGAI0424.

[5] 卷积神经网络为什么能够称霸计算机视觉领域?【获取码】SIGAI0426.

[6] 用一张图理解SVM的脉络 【获取码】SIGAI0428.

[7] 人脸检测算法综述 【获取码】SIGAI0503.

[8] 理解神经网络的激活函数 【获取码】SIGAI0505.

[9] 深度卷积神经网络演化历史及结构改进脉络-40页长文全面解读 【获取码】SIGAI0508.

[10] 理解梯度下降法 【获取码】SIGAI0511.

[11] 循环神经网络综述—语音识别与自然语言处理的利器 【获取码】SIGAI0515.

[12] 理解凸优化 【获取码】SIGAI0518.

[13] 【实验】理解SVM的核函数和参数 【获取码】SIGAI0522.

[14] 【SIGAI综述】行人检测算法 【获取码】SIGAI0525.

[15] 机器学习在自动驾驶中的应用—以百度阿波罗平台为例(上)【获取码】SIGAI0529.

[16] 理解牛顿法 SIGAI 2018.5.31

[17] 【群话题精华】5月集锦—机器学习和深度学习中一些值得思考的问题 【获取码】SIGAI0601.

[18] 大话Adaboost算法 【获取码】SIGAI0602.

[19] FlowNet到FlowNet2.0:基于卷积神经网络的光流预测算法 【获取码】SIGAI0604.

[20] 理解主成分分析(PCA)【获取码】SIGAI0606.

[21] 人体骨骼关键点检测综述 【获取码】SIGAI0608.

[22] 理解决策树 【获取码】SIGAI0611.

[23] 用一句话总结常用的机器学习算法 【获取码】SIGAI0613.

[24] 目标检测算法之YOLO 【获取码】SIGAI0615.

[25] 理解过拟合 【获取码】SIGAI0618.

[26] 理解计算:从√2到AlphaGo ——第1季 从√2谈起 【获取码】SIGAI0620.

[27] 场景文本检测——CTPN算法介绍 【获取码】SIGAI0622.

[28] 卷积神经网络的压缩和加速 【获取码】SIGAI0625.

[29] k近邻算法 【获取码】SIGAI0627.

[30] 自然场景文本检测识别技术综述 【获取码】SIGAI0629.

[31] 理解计算:从√2到AlphaGo ——第2季 神经计算的历史背景 【获取码】SIGAI0702.

[32] 机器学习算法地图 【获取码】SIGAI0704.

[33]反向传播算法推导-全连接神经网络【获取码】SIGAI0706.

[34]生成式对抗网络模型综述【获取码】SIGAI0709.

[35]怎样成为一名优秀的算法工程师【获取码】SIGAI0711.

[36] 理解计算:从√2到AlphaGo ——第3季 神经网络的数学模型【获取码】SIGAI0702.

[37] 人脸检测算法之S3FD 【获取码】SIGAI6

[38]基于深度负相关学习的人群计数方法 【获取码】SIGAI0718

[39] 流形学习概述 【获取码】SIGAI0723

相关文章
|
7月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进-论文笔记】RFAConv:感受野注意力卷积,创新空间注意力
【YOLO目标检测专栏】探索空间注意力局限,提出感受野注意力(RFA)机制,解决卷积核参数共享问题。RFAConv增强大尺寸卷积核处理能力,不增加计算成本,提升网络性能。已在YOLOv8中实现,详情见YOLO目标检测创新改进与实战案例专栏。
|
7月前
|
弹性计算 Java Maven
我的感受
云效流水线Flow是Java&Maven项目理想的CI/CD工具,以其直观界面、全面功能和阿里云的强性能支持脱颖而出。它简化了新用户的学习过程,无缝集成阿里云ECS,且允许自定义构建脚本,提供高开放性和定制化。尽管非阿里云服务集成有改进空间,但对已有阿里云基础架构的团队,Flow在成本效益和满意度上表现出色,推荐给寻求深度集成解决方案的团队。
78 0
|
机器学习/深度学习
|
机器学习/深度学习 数据可视化 固态存储
感受野和特征图的深度理解
​ 经典目标检测和最新目标跟踪都用到了RPN(region proposal network),锚框(anchor)是RPN的基础,感受野(receptive field, RF)是anchor的基础。本文介绍感受野及其计算方法,和有效感受野概念。同时也向大家补充特征图的相关知识~ ​
390 0
感受野和特征图的深度理解
|
弹性计算 运维 安全
使用感受
一,阿里云服务器的稳定性很好 虚拟主机是很多用户建站的首选方案,这种方式是很多用户同时使用一个服务器,因此如果一个网站受到攻击,所有其它的网站都会受影响,所以空间的稳定性将大大降低。但是使用阿里云服务器就没有这种情况,因为阿里云服务器是一种集群式服务器。 二,响应速度更快 阿里云服务器使用多线互通的的带宽,其响应速度是非常快的。 三,更安全可靠 对用户来说,服务器的安全十分重要,十分担心其出现故障,一旦出现故障,网站就无法正常运行不会正常。阿里云服务器则不会出现这类情况,即使网站出现了运营的问题,也可以自动转移到其它机器,黑客也就很难攻击了。 四,更方便使用 对于一些中小型企业,不断扩展深入。
|
算法 安全 项目管理
感受
1.自我情况 2.使用过程 3.心得体会
|
前端开发 JavaScript NoSQL
第一次使用感受
尝试将自己的个人博客项目部署
第一次使用感受