学习过程:
- elasticsearch 下载安装
- elasticsearch-head 安装
- spring boot 下elasticsearch的配置
- 使用ElasticsearchRepository实现增删改查(ElasticsearchRepository,elasticsearchTemplate)
- 如何优雅的使用FunctionScoreQueryBuilder
- 测试
一、elasticsearch 下载安装:ElasticSearch官网:http://www.elasticsearch.org
在安装Elasticsearch之前我们需要先安装jdk的环境,这些都是老生常谈,我们不去多加叙述,具体的安装步骤我们可以参考https://www.cnblogs.com/ljhdo/p/4887557.html ,这里有详细的Elasticsearch及jdk安装步骤。安装好之后我们可以找到安装目录bin下的批处理文件来启动项目.
看到这样的界面后我们可以在浏览器里输入http://localhost:9200/可以看到返回了一段json,其中对外服务的http端口,默认为9200,9300是客户端的端口。在这里elasticsearch我们就安装完了。
{
"name": "node-1",
"cluster_name": "my-application",
"cluster_uuid": "YWYqGhDnSE-z3pbVDEs8rQ",
"version": {
"number": "6.3.0",
"build_flavor": "default",
"build_type": "zip",
"build_hash": "424e937",
"build_date": "2018-06-11T23:38:03.357887Z",
"build_snapshot": false,
"lucene_version": "7.3.1",
"minimum_wire_compatibility_version": "5.6.0",
"minimum_index_compatibility_version": "5.0.0"
},
"tagline": "You Know, for Search"
}
二、elasticsearch-head 安装
elasticsearch安装完后我们需要安装head插件管理我们的elasticsearch,上面链接教程中elasticsearch使用的是2.4.4的版本,而我用的是6.3.0的版本,在cmd中使用es命令的方式已经不可用了。我们需要自己区去官网下载安装包,在这之前还需要先安装node.js和grunt,参考https://www.cnblogs.com/Onlywjy/p/Elasticsearch.html我们能很快的完成elasticsearch及head的安装和配置。安装完成后我们可以通过cmd进入到head的安装目录通过“npm run start ”来启动head插件,在浏览器中输入”http://localhost:9100“来访问。
三、spring boot 下配置
pom依赖:
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-elasticsearch</artifactId> </dependency>
application.yml
spring:
data:
elasticsearch:
cluster-name: my-application #elasticsearch/config文件下elasticsearch.yml中设置的cluster.name
cluster-nodes: 127.0.0.1:9300 #客户端端口,启动elasticsearch时默认为9300
四、使用ElasticsearchRepository实现增删改查
参考https://blog.csdn.net/larger5/article/details/79777319,偷懒的同学,可以直接看下面,我们完成了pojo,dao,controller的编写,由于只是做了个demo就没有使用service层去规范。在clone链接中代码时候我们会遇到一些错误,下面我们着手解决这些错误。
pojo
import org.springframework.data.annotation.Id; import org.springframework.data.elasticsearch.annotations.Document; /** * @Author: gaofeng_peng * @Date: 2018/6/24 10:44 */ @Document(indexName = "product", type = "book") public class Book { @Id String id; String name; String message; String type; public String getId() { return id; } public void setId(String id) { this.id = id; } public String getName() { return name; } public void setName(String name) { this.name = name; } public String getMessage() { return message; } public void setMessage(String message) { this.message = message; } public String getType() { return type; } public void setType(String type) { this.type = type; }
在上述代码中@Document注解中 indexName指的是索引,可以理解成mysql中数据库 ,type既对应的是数据表。
dao
public interface BookDao extends ElasticsearchRepository<Book, String> { Book findBooksById(String id); void deleteById(String id); }
参考的文档中,dao层没有写接口,在后面的实现中会报错,忖度作者的用意controller下getBookById中 bookDao.findOne() 方法 对应了 findBooksById,insertBook中bookDao.delete() 对应deleteById,相信这么简单大家都能看出来。
controller
package com.bookstore.controller.backend; import com.bookstore.dao.BookDao; import com.bookstore.pojo.Book; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.index.query.QueryStringQueryBuilder; import org.elasticsearch.index.query.functionscore.FunctionScoreQueryBuilder; import org.elasticsearch.index.query.functionscore.ScoreFunctionBuilders; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.domain.Page; import org.springframework.data.domain.PageRequest; import org.springframework.data.domain.Pageable; import org.springframework.data.elasticsearch.core.query.NativeSearchQueryBuilder; import org.springframework.data.elasticsearch.core.query.SearchQuery; import org.springframework.web.bind.annotation.*; import java.util.ArrayList; import java.util.Iterator; import java.util.List; /** * @Author: gaofeng_peng * @Date: 2018/6/24 11:02 */ @RestController @RequestMapping("book") public class BookController { @Autowired private BookDao bookDao; /** * 1、查 id * * @param id * @return */ @GetMapping("/get/{id}") public Book getBookById(@PathVariable String id) { return bookDao.findBooksById(id); } /** * 2、查 ++:全文检索(根据整个实体的所有属性,可能结果为0个) * * @param q * @return */ @GetMapping("/select/{q}") public List<Book> testSearch(@PathVariable String q) { QueryStringQueryBuilder builder = new QueryStringQueryBuilder(q); Iterable<Book> searchResult = bookDao.search(builder); Iterator<Book> iterator = searchResult.iterator(); List<Book> list = new ArrayList<Book>(); while (iterator.hasNext()) { list.add(iterator.next()); } return list; } /** * 3、查 +++:分页、分数、分域(结果一个也不少) * * @param page * @param size * @param q * @return */ @GetMapping("/{page}/{size}/{q}") public List<Book> searchCity(@PathVariable Integer page, @PathVariable Integer size, @PathVariable String q) { // 分页参数 Pageable pageable = new PageRequest(page, size); FunctionScoreQueryBuilder.FilterFunctionBuilder[] functions = { new FunctionScoreQueryBuilder.FilterFunctionBuilder( QueryBuilders.matchQuery("name", q), ScoreFunctionBuilders.weightFactorFunction(1000)), new FunctionScoreQueryBuilder.FilterFunctionBuilder( QueryBuilders.matchQuery("message", q), ScoreFunctionBuilders.weightFactorFunction(1000)) }; FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery(functions); // 分数、分页 SearchQuery searchQuery = new NativeSearchQueryBuilder().withPageable(pageable) .withQuery(functionScoreQueryBuilder).build(); Page<Book> searchPageResults = bookDao.search(searchQuery); return searchPageResults.getContent(); } /** * 4、增 * * @param book * @return */ @PostMapping("/insert") public Book insertBook(Book book) { bookDao.save(book); return book; } /** * 5、删 id * * @param id * @return */ @DeleteMapping("/delete/{id}") public Book insertBook(@PathVariable String id) { Book book = bookDao.findBooksById(id); bookDao.deleteById(id); return book; } /** * 6、改 * * @param book * @return */ @PutMapping("/update") public Book updateBook(Book book) { bookDao.save(book); return book; } }
在这里我们要着重讲一下参考文档中的searchCity 方法,下面是作者的写法:
/** * 3、查 +++:分页、分数、分域(结果一个也不少) * @param page * @param size * @param q * @return * @return */ @GetMapping("/{page}/{size}/{q}") public List<Book> searchCity(@PathVariable Integer page, @PathVariable Integer size, @PathVariable String q) { // 分页参数 Pageable pageable = new PageRequest(page, size); // 分数,并自动按分排序 FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery() .add(QueryBuilders.boolQuery().should(QueryBuilders.matchQuery("name", q)), ScoreFunctionBuilders.weightFactorFunction(1000)) // 权重:name 1000分 .add(QueryBuilders.boolQuery().should(QueryBuilders.matchQuery("message", q)), ScoreFunctionBuilders.weightFactorFunction(100)); // 权重:message 100分 // 分数、分页 SearchQuery searchQuery = new NativeSearchQueryBuilder().withPageable(pageable) .withQuery(functionScoreQueryBuilder).build(); Page<Book> searchPageResults = bookDao.search(searchQuery); return searchPageResults.getContent(); }
大家注意下红色的部分,由于我们在配置依赖时候没有指定elasticsearch的版本,现在如果还是直接clone上面的依赖的话会发现已经没有add的方法了,一种方式去指定版本,都走到这一步了,我们采取另一种方式使用
FunctionScoreQueryBuilder functionScoreQuery(ScoreFunctionBuilder function)方法,具体看下面
public List<Book> searchCity(@PathVariable Integer page, @PathVariable Integer size, @PathVariable String q) { // 分页参数 Pageable pageable = new PageRequest(page, size); FunctionScoreQueryBuilder.FilterFunctionBuilder[] functions = { new FunctionScoreQueryBuilder.FilterFunctionBuilder( QueryBuilders.matchQuery("name", q), ScoreFunctionBuilders.weightFactorFunction(1000)), new FunctionScoreQueryBuilder.FilterFunctionBuilder( QueryBuilders.matchQuery("message", q), ScoreFunctionBuilders.weightFactorFunction(1000)) }; FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery(functions); // 分数、分页 SearchQuery searchQuery = new NativeSearchQueryBuilder().withPageable(pageable) .withQuery(functionScoreQueryBuilder).build(); Page<Book> searchPageResults = bookDao.search(searchQuery); return searchPageResults.getContent(); }
上面我们使用的是:SpringData
封装,直接在 dao 接口继承 ElasticsearchRepository的方式,作者很全面还提供了elasticsearchTemplate的方式,
package com.bookstore.controller.backend; import org.elasticsearch.action.search.SearchRequestBuilder; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.Client; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.SearchHits; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.elasticsearch.core.ElasticsearchTemplate; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; import java.util.ArrayList; import java.util.List; import java.util.Map; /** * @Author: gaofeng_peng * @Date: 2018/6/24 10:58 */ @RestController @RequestMapping("/template") public class BookControllerTemplate { @Autowired ElasticsearchTemplate elasticsearchTemplate; /** * 查询所有 * @throws Exception */ @GetMapping("/all") public List<Map<String, Object>> searchAll() throws Exception { //这一步是最关键的 Client client = elasticsearchTemplate.getClient(); // @Document(indexName = "product", type = "book") SearchRequestBuilder srb = client.prepareSearch("product").setTypes("book"); SearchResponse sr = srb.setQuery(QueryBuilders.matchAllQuery()).execute().actionGet(); // 查询所有 SearchHits hits = sr.getHits(); List<Map<String, Object>> list = new ArrayList<Map<String, Object>>(); for (SearchHit hit : hits) { Map<String, Object> source = hit.getSource(); list.add(source); System.out.println(hit.getSourceAsString()); } return list; } }
到此位置简单的增删改查就完成了,还需一点注意的是作者@RestController什么的没加,记得加上。。。。。
五、如何优雅的使用FunctionScoreQueryBuilder
福利链接:https://www.programcreek.com/java-api-examples/index.php?api=org.elasticsearch.index.query.functionscore.FunctionScoreQueryBuilder,找了老半天,必须给我个
上面的是FunctionScoreQueryBuilder的Java代码示例,总有那么一种方式适合你。
六、测试
在这里我们安装了google 的restlet client 插件来方便测试,当然,也可以使用head插件上的复合查询来测试。
图片比较大这里我们只放部分的测试结果,就不一一列举了,至此整个项目就完成了,有什么不足,欢迎大家指点。