python数据抓取分析(python + mongodb)

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: 分享点干货!!! Python数据抓取分析 编程模块:requests,lxml,pymongo,time,BeautifulSoup 首先获取所有产品的分类网址: 1 def step(): 2 try: 3 headers = { 4 。

分享点干货!!!

Python数据抓取分析

编程模块:requests,lxml,pymongo,time,BeautifulSoup

首先获取所有产品的分类网址:

 1 def step():
 2     try:
 3         headers = {
 4            。。。。。
 5             }
 6         r = requests.get(url,headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         url = soup.find_all(正则表达式)
10         for i in url:
11             url2 =  i.find_all('a')
12             for j in url2:
13                  step1url =url + j['href']
14                  print step1url
15                  step2(step1url)
16     except Exception,e:
17         print e

 

我们在产品分类的同时需要确定我们所访问的地址是产品还是又一个分类的产品地址(所以需要判断我们访问的地址是否含有if判断标志):

 1 def step2(step1url):
 2     try:
 3         headers = {
 4            。。。。
 5             }
 6         r = requests.get(step1url,headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         a = soup.find('div',id='divTbl')
10         if a:
11             url = soup.find_all('td',class_='S-ITabs')
12             for i in url:
13                 classifyurl =  i.find_all('a')
14                 for j in classifyurl:
15                      step2url = url + j['href']
16                      #print step2url
17                      step3(step2url)
18         else:
19             postdata(step1url)

当我们if判断后为真则将第二页的分类网址获取到(第一个步骤),否则执行postdata函数,将网页产品地址抓取!

 1 def producturl(url):
 2     try:
 3         p1url = doc.xpath(正则表达式)
 4         for i in xrange(1,len(p1url) + 1):
 5             p2url = doc.xpath(正则表达式)
 6             if len(p2url) > 0:
 7                 producturl = url + p2url[0].get('href')
 8                 count = db[table].find({'url':producturl}).count()
 9                 if count <= 0:
10                         sn = getNewsn()
11                         db[table].insert({"sn":sn,"url":producturl})
12                         print str(sn) + 'inserted successfully'
13                 else:
14                         'url exist'
15 
16     except Exception,e:
17         print e

其中为我们所获取到的产品地址并存入mongodb中,sn作为地址的新id。

下面我们需要在mongodb中通过新id索引来获取我们的网址并进行访问,对产品进行数据分析并抓取,将数据更新进数据库内!

其中用到最多的BeautifulSoup这个模块,但是对于存在于js的价值数据使用BeautifulSoup就用起来很吃力,所以对于js中的数据我推荐使用xpath,但是解析网页就需要用到HTML.document_fromstring(url)方法来解析网页。

对于xpath抓取价值数据的同时一定要细心!如果想了解xpath就在下面留言,我会尽快回答!

 1 def parser(sn,url):
 2     try:
 3         headers = {
 4             。。。。。。
 5             }
 6         r = requests.get(url, headers=headers,timeout=30)
 7         html = r.content
 8         soup = BeautifulSoup(html,"lxml")
 9         dt = {}
10         #partno
11         a = soup.find("meta",itemprop="mpn")
12         if a:
13             dt['partno'] = a['content']
14         #manufacturer
15         b = soup.find("meta",itemprop="manufacturer")
16         if b:
17             dt['manufacturer'] = b['content']
18         #description
19         c = soup.find("span",itemprop="description")
20         if c:
21             dt['description'] = c.get_text().strip()
22         #price
23         price = soup.find("table",class_="table table-condensed occalc_pa_table")
24         if price:
25             cost = {}
26             for i in price.find_all('tr'):
27                 if len(i) > 1:
28                     td = i.find_all('td')
29                     key=td[0].get_text().strip().replace(',','')
30                     val=td[1].get_text().replace(u'\u20ac','').strip()
31                     if key and val:
32                         cost[key] = val
33             if cost:
34                 dt['cost'] = cost
35                 dt['currency'] = 'EUR'
36         
37         #quantity
38         d = soup.find("input",id="ItemQuantity")
39         if d:
40            dt['quantity'] = d['value']
41         #specs
42         e = soup.find("div",class_="row parameter-container")
43         if e:
44             key1 = []
45             val1= []
46             for k in e.find_all('dt'):
47                 key =  k.get_text().strip().strip('.')
48                 if key:
49                     key1.append(key)
50             for i in e.find_all('dd'):
51                 val =  i.get_text().strip()
52                 if val:
53                     val1.append(val)
54             specs = dict(zip(key1,val1))
55         if specs:
56             dt['specs'] = specs
57             print dt
58 
59             
60         if dt:
61             db[table].update({'sn':sn},{'$set':dt})
62             print str(sn) +  ' insert successfully'
63             time.sleep(3)
64         else:
65             error(str(sn) + '\t' + url)
66     except Exception,e:
67         error(str(sn) + '\t' + url)
68         print "Don't data!"

最后全部程序运行,将价值数据分析处理并存入数据库中!

 

Welcome to Python world! I have a contract in this world! How about you?
相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
12天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
14天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
14天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
23 1
|
15天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
15天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
21天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
69 7
|
20天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
28 3
|
21天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
38 2
|
26天前
|
数据采集 机器学习/深度学习 搜索推荐
Python自动化:关键词密度分析与搜索引擎优化
Python自动化:关键词密度分析与搜索引擎优化
|
26天前
|
存储 NoSQL MongoDB
MongoDB 查询分析
10月更文挑战第21天
11 1
下一篇
无影云桌面