吴恩达《机器学习》课程总结(7)正则化

简介: 7.1过拟合的问题训练集表现良好,测试集表现差。鲁棒性差。以下是两个例子(一个是回归问题,一个是分类问题)解决办法:(1)丢弃一些不能帮助我们正确预测的特征。可以使用工选择保留哪些特征,或者使用一些模型选择的算法来帮忙(PCA);(2)正则化。

7.1过拟合的问题

训练集表现良好,测试集表现差。鲁棒性差。以下是两个例子(一个是回归问题,一个是分类问题)

解决办法:

(1)丢弃一些不能帮助我们正确预测的特征。可以使用工选择保留哪些特征,或者使用一些模型选择的算法来帮忙(PCA);

(2)正则化。保留素有的特征,但是减少参数的大小。

7.2代价函数

其中λ称为正则化参数。

经过正则化处理的模型和原模型的可能对比如如下:

不对θ0正则化。

7.3正则化线性回归

对于j=1,2,3……有:

可以看出,正则化线性回归的梯度下降法的变化在于,每次都会在原有算法的更新规则的基础上令θ值减少了一个额外的值。

7.4正则化的逻辑回归模型

相关文章
|
9月前
|
机器学习/深度学习
大模型开发:解释正则化及其在机器学习中的作用。
正则化是防止机器学习过拟合的技术,通过限制模型参数和控制复杂度避免过拟合。它包含L1和L2正则化,前者产生稀疏解,后者适度缩小参数。选择合适的正则化方法和强度对模型性能关键,常用交叉验证评估。
247 1
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 吴恩达:机器学习的六个核心算法!
吴恩达教授在《The Batch》周报中介绍了机器学习领域的六个基础算法:线性回归、逻辑回归、梯度下降、神经网络、决策树和k均值聚类。这些算法是现代AI的基石,涵盖了从简单的统计建模到复杂的深度学习。线性回归用于连续变量预测,逻辑回归用于二分类,梯度下降用于优化模型参数,神经网络处理非线性关系,决策树提供直观的分类规则,而k均值聚类则用于无监督学习中的数据分组。这些算法各有优缺点,广泛应用于经济学、金融、医学、市场营销等多个领域。通过不断学习和实践,我们可以更好地掌握这些工具,发掘智能的乐趣。
146 1
算法金 | 吴恩达:机器学习的六个核心算法!
|
8月前
|
机器学习/深度学习 人工智能 算法
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
130 3
|
7月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的正则化技术
在机器学习领域,正则化技术是防止过拟合的关键手段之一。本文将深入探讨L1与L2正则化方法的理论基础、实际应用及其对模型性能的影响。通过对比分析与案例研究,本文旨在为读者提供一套系统的正则化应用框架,帮助构建更加健壮和可靠的机器学习模型。
|
9月前
|
机器学习/深度学习 算法 算法框架/工具
【Python机器学习专栏】深度学习中的正则化与优化技术
【4月更文挑战第30天】本文探讨了深度学习中的正则化和优化技术,以提升模型的泛化能力和训练效率。正则化包括L1和L2正则化以及Dropout,防止过拟合。优化技术涵盖梯度下降法、动量法和Adam优化器,加速模型收敛。Python示例展示了如何在Keras中应用这些技术,如L2正则化、Dropout及Adam优化器。
143 0
|
9月前
|
机器学习/深度学习 人工智能 算法
机器学习的魔法(一)从零开始理解吴恩达的精炼笔记
机器学习的魔法(一)从零开始理解吴恩达的精炼笔记
106 0
|
9月前
|
机器学习/深度学习
Coursera 吴恩达Machine Learning(机器学习)课程 |第五周测验答案(仅供参考)
Coursera 吴恩达Machine Learning(机器学习)课程 |第五周测验答案(仅供参考)
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
193 6
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
273 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
53 14