python 机器学习 sklearn——手把手教你预测心脏病

简介: python 机器学习 sklearn——手把手教你预测心脏病

流程

1.数据导入,清洗拆分

2.通过sklearn得到数据模型

3.开始预测(这里我们将用回归和决策树来进行预测)

前期准备

数据

心脏病数据下载

导包

```
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

这里我们主要是sklearn的包,以及numpy,方便对于数据进行操作

数据操作

准备 样本数据 结果数据

最后一列是我们的结果,我们需要把我们的结果和各项身体数据进行分离

#删除最后一列  样本数据
features=heart_df.drop(columns=["target"])
#保存标签 结果数据
target=heart_df["target"]

切分训练集

我们的训练集合的比列以3:1最为合适,即学习数据75%,预测数据25%,在sklearn里面也会有专门的函数来采集样本

#切分训练集
X_train,X_test,Y_train,Y_test=train_test_split(features,target,test_size=0.25)

训练数据

逻辑回归

def test_logistic(*data):
    X_train, X_test, Y_train, Y_test=data
    clf=LogisticRegression()#逻辑回归
    clf.fit(X_test,Y_test)#梯度下降,递归
    print("学习模型预测成绩:{:.4f}".format(clf.score(X_train,Y_train)))
    print("实际模型预测成绩:{:.4f}".format(clf.score(X_test, Y_test)))

决策树

def test_decision_tree(*data):
    X_train, X_test, Y_train, Y_test = data
    clf=DecisionTreeClassifier(max_depth=3,criterion="entropy")
    clf.fit(X_train,Y_train)
    print("学习模型决策树预测成绩:{:.4f}".format(clf.score(X_train, Y_train)))
    print("实际模型决策树预测成绩:{:.4f}".format(clf.score(X_test, Y_test)))
    # decision_tree_pre=clf.predict(X_test)
    # print("decision_tree:",decision_tree_pre)
    # print("true lbel:",Y_test)
    return clf

结果

这样我们的预测就完成了,我们一起来看看结果吧

决策树的结果可以输出喔

总结

经过这一顿操作下来,我们一起再好好的总结一下,起始就是将我们的数据的取值情况和它的特征先分开,然后我们利用train_test_split去获得取值,然后直接使用clf函数来进行学习,再去对我们的结果获取成绩

相关文章
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
109 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
61 2
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
52 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
72 0
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练
|
机器学习/深度学习 Python
Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略daiding
Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略daiding
Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略daiding
|
机器学习/深度学习 Python
Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略
Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略
Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。