python 机器学习 sklearn——手把手教你预测心脏病

简介: python 机器学习 sklearn——手把手教你预测心脏病

流程

1.数据导入,清洗拆分

2.通过sklearn得到数据模型

3.开始预测(这里我们将用回归和决策树来进行预测)

前期准备

数据

心脏病数据下载

导包

```
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

这里我们主要是sklearn的包,以及numpy,方便对于数据进行操作

数据操作

准备 样本数据 结果数据

最后一列是我们的结果,我们需要把我们的结果和各项身体数据进行分离

#删除最后一列  样本数据
features=heart_df.drop(columns=["target"])
#保存标签 结果数据
target=heart_df["target"]

切分训练集

我们的训练集合的比列以3:1最为合适,即学习数据75%,预测数据25%,在sklearn里面也会有专门的函数来采集样本

#切分训练集
X_train,X_test,Y_train,Y_test=train_test_split(features,target,test_size=0.25)

训练数据

逻辑回归

def test_logistic(*data):
    X_train, X_test, Y_train, Y_test=data
    clf=LogisticRegression()#逻辑回归
    clf.fit(X_test,Y_test)#梯度下降,递归
    print("学习模型预测成绩:{:.4f}".format(clf.score(X_train,Y_train)))
    print("实际模型预测成绩:{:.4f}".format(clf.score(X_test, Y_test)))

决策树

def test_decision_tree(*data):
    X_train, X_test, Y_train, Y_test = data
    clf=DecisionTreeClassifier(max_depth=3,criterion="entropy")
    clf.fit(X_train,Y_train)
    print("学习模型决策树预测成绩:{:.4f}".format(clf.score(X_train, Y_train)))
    print("实际模型决策树预测成绩:{:.4f}".format(clf.score(X_test, Y_test)))
    # decision_tree_pre=clf.predict(X_test)
    # print("decision_tree:",decision_tree_pre)
    # print("true lbel:",Y_test)
    return clf

结果

这样我们的预测就完成了,我们一起来看看结果吧

决策树的结果可以输出喔

总结

经过这一顿操作下来,我们一起再好好的总结一下,起始就是将我们的数据的取值情况和它的特征先分开,然后我们利用train_test_split去获得取值,然后直接使用clf函数来进行学习,再去对我们的结果获取成绩

相关文章
|
1天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
12 3
|
6天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
18 1
|
12天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
17天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
16 1
|
18天前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
18 2
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
385 0
|
6月前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
176 0
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
49 5
|
1月前
|
机器学习/深度学习 数据采集 分布式计算
【Python篇】深入机器学习核心:XGBoost 从入门到实战
【Python篇】深入机器学习核心:XGBoost 从入门到实战
65 3
|
1月前
|
机器学习/深度学习 算法 数据可视化
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧2
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
34 1