正则化是机器学习中用于防止模型过拟合的一种技术。
正则化的主要目的是限制模型的复杂度,以减少过拟合的风险,即模型在训练数据上表现得很好,但在新的、未见过的数据上表现不佳的现象。通过在损失函数中添加一个正则项,可以缩小解空间,从而减少求出过拟合解的可能性。
正则化的作用可以总结为以下几点:
- 限制模型参数:正则化通过在损失函数中加入额外的项来限制模型参数的大小,防止它们变得过大。
- 控制模型复杂度:通过引入惩罚项,正则化有助于控制模型的复杂度,使其在减小训练误差的同时保持简洁。
- 防止过拟合:正则化的目的是防止模型过于贴近训练数据,从而在预测新数据时减少错误,尤其是在模型复杂时更容易出现过拟合。
- L1和L2正则化:L1正则化(Lasso回归)倾向于使模型参数稀疏,即某些参数可能变为零,而L2正则化(岭回归)则会使参数值适度缩小,但不太可能为零。
在实际应用中,选择合适的正则化方法和正则化强度对于模型的性能至关重要。通常,这需要通过交叉验证等技术来进行评估和选择。