Prometheus Operator 架构 - 每天5分钟玩转 Docker 容器技术(178)

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 本节讨论 Prometheus Operator 的架构。

本节讨论 Prometheus Operator 的架构。
因为 Prometheus Operator 是基于 Prometheus 的,我们需要先了解一下 Prometheus。

Prometheus 架构

Prometheus 是一个非常优秀的监控工具。准确的说,应该是监控方案。Prometheus 提供了数据搜集、存储、处理、可视化和告警一套完整的解决方案。Prometheus 的架构如下图所示:

官网上的原始架构图比上面这张要复杂一些,为了避免注意力分散,这里只保留了最重要的组件。

Prometheus Server

Prometheus Server 负责从 Exporter 拉取和存储监控数据,并提供一套灵活的查询语言(PromQL)供用户使用。

Exporter

Exporter 负责收集目标对象(host, container...)的性能数据,并通过 HTTP 接口供 Prometheus Server 获取。

可视化组件

监控数据的可视化展现对于监控方案至关重要。以前 Prometheus 自己开发了一套工具,不过后来废弃了,因为开源社区出现了更为优秀的产品 Grafana。Grafana 能够与 Prometheus 无缝集成,提供完美的数据展示能力。

Alertmanager

用户可以定义基于监控数据的告警规则,规则会触发告警。一旦 Alermanager 收到告警,会通过预定义的方式发出告警通知。支持的方式包括 Email、PagerDuty、Webhook 等.

Prometheus Operator 架构

Prometheus Operator 的目标是尽可能简化在 Kubernetes 中部署和维护 Prometheus 的工作。其架构如下图所示:

图上的每一个对象都是 Kubernetes 中运行的资源。

Operator

Operator 即 Prometheus Operator,在 Kubernetes 中以 Deployment 运行。其职责是部署和管理 Prometheus Server,根据 ServiceMonitor 动态更新 Prometheus Server 的监控对象。

Prometheus Server

Prometheus Server 会作为 Kubernetes 应用部署到集群中。为了更好地在 Kubernetes 中管理 Prometheus,CoreOS 的开发人员专门定义了一个命名为 Prometheus 类型的 Kubernetes 定制化资源。我们可以把 Prometheus看作是一种特殊的 Deployment,它的用途就是专门部署 Prometheus Server。

Service

这里的 Service 就是 Cluster 中的 Service 资源,也是 Prometheus 要监控的对象,在 Prometheus 中叫做 Target。每个监控对象都有一个对应的 Service。比如要监控 Kubernetes Scheduler,就得有一个与 Scheduler 对应的 Service。当然,Kubernetes 集群默认是没有这个 Service 的,Prometheus Operator 会负责创建。

ServiceMonitor

Operator 能够动态更新 Prometheus 的 Target 列表,ServiceMonitor 就是 Target 的抽象。比如想监控 Kubernetes Scheduler,用户可以创建一个与 Scheduler Service 相映射的 ServiceMonitor 对象。Operator 则会发现这个新的 ServiceMonitor,并将 Scheduler 的 Target 添加到 Prometheus 的监控列表中。

ServiceMonitor 也是 Prometheus Operator 专门开发的一种 Kubernetes 定制化资源类型。

Alertmanager

除了 Prometheus 和 ServiceMonitor,Alertmanager 是 Operator 开发的第三种 Kubernetes 定制化资源。我们可以把 Alertmanager 看作是一种特殊的 Deployment,它的用途就是专门部署 Alertmanager 组件。

学习完架构,下一节我们将部署 Prometheus Operator。

书籍:

1.《每天5分钟玩转Kubernetes》
https://item.jd.com/26225745440.html

2.《每天5分钟玩转Docker容器技术》
https://item.jd.com/16936307278.html

3.《每天5分钟玩转OpenStack》
https://item.jd.com/12086376.html

相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
目录
相关文章
|
2月前
|
存储 机器学习/深度学习 数据库
阿里云服务器X86/ARM/GPU/裸金属/超算五大架构技术特点、场景适配参考
在云计算技术飞速发展的当下,云计算已经渗透到各个行业,成为企业数字化转型的关键驱动力。选择合适的云服务器架构对于提升业务效率、降低成本至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供大家了解和选择参考。
478 61
|
1月前
|
运维 监控 Cloud Native
智联招聘 × 阿里云 ACK One:云端弹性算力颠覆传统 IDC 架构,打造春招技术新范式
在 2025 年春季招聘季的激战中,智联招聘凭借阿里云 ACK One 注册集群与弹性 ACS 算力的深度融合,成功突破传统 IDC 机房的算力瓶颈,以云上弹性架构支撑千万级用户的高并发访问,实现招聘服务效率与稳定性的双重跃升。文章介绍了 ACK One+ACS 的弹性架构如何解决了春招的燃眉之急,让智联招聘的技术团队能够聚焦创新业务开发,欢迎关注。
|
1月前
|
运维 Kubernetes Cloud Native
智联招聘 × 阿里云 ACK One:云端弹性算力颠覆传统 IDC 架构,打造春招技术新范式
在 2025 年春季招聘季的激战中,智联招聘凭借阿里云 ACK One 注册集群与弹性 ACS 算力的深度融合,成功突破传统 IDC 机房的算力瓶颈,以云上弹性架构支撑千万级用户的高并发访问,实现招聘服务效率与稳定性的双重跃升。
|
2月前
|
人工智能 缓存 自然语言处理
Bolt DIY架构揭秘:从模型初始化到响应生成的技术之旅
在使用Bolt DIY或类似的AI对话应用时,你是否曾好奇过从输入提示词到获得回答的整个过程是如何运作的?当你点击发送按钮那一刻,背后究竟发生了什么?本文将揭开这一过程的神秘面纱,深入浅出地解析AI对话系统的核心技术架构。
95 5
|
1月前
|
数据采集 存储 算法
人才招聘系统开发全解析:从技术底层到商业逻辑的完整架构优雅草卓伊凡|小无|果果|阿才
人才招聘系统开发全解析:从技术底层到商业逻辑的完整架构优雅草卓伊凡|小无|果果|阿才
83 2
人才招聘系统开发全解析:从技术底层到商业逻辑的完整架构优雅草卓伊凡|小无|果果|阿才
|
2月前
|
机器学习/深度学习 人工智能 算法
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
该研究系统梳理了大型多模态推理模型(LMRMs)的技术发展,从早期模块化架构到统一的语言中心框架,提出原生LMRMs(N-LMRMs)的前沿概念。论文划分三个技术演进阶段及一个前瞻性范式,深入探讨关键挑战与评估基准,为构建复杂动态环境中的稳健AI系统提供理论框架。未来方向聚焦全模态泛化、深度推理与智能体行为,推动跨模态融合与自主交互能力的发展。
166 13
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
|
2月前
|
存储 人工智能 自然语言处理
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
本文深入探讨了混合专家(MoE)架构在大型语言模型中的应用与技术原理。MoE通过稀疏激活机制,在保持模型高效性的同时实现参数规模的大幅扩展,已成为LLM发展的关键趋势。文章分析了MoE的核心组件,包括专家网络与路由机制,并对比了密集与稀疏MoE的特点。同时,详细介绍了Mixtral、Grok、DBRX和DeepSeek等代表性模型的技术特点及创新。MoE不仅解决了传统模型扩展成本高昂的问题,还展现出专业化与适应性强的优势,未来有望推动AI工具更广泛的应用。
332 4
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
|
3月前
|
弹性计算 负载均衡 网络协议
阿里云SLB深度解析:从流量分发到架构优化的技术实践
本文深入探讨了阿里云负载均衡服务(SLB)的核心技术与应用场景,从流量分配到架构创新全面解析其价值。SLB不仅是简单的流量分发工具,更是支撑高并发、保障系统稳定性的智能中枢。文章涵盖四层与七层负载均衡原理、弹性伸缩引擎、智能DNS解析等核心技术,并结合电商大促、微服务灰度发布等实战场景提供实施指南。同时,针对性能调优与安全防护,分享连接复用优化、DDoS防御及零信任架构集成的实践经验,助力企业构建面向未来的弹性架构。
319 76
|
3月前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
683 62
|
25天前
|
存储 缓存 运维
微信读书十周年,后台架构的技术演进和实践总结
微信读书经过了多年的发展,赢得了良好的用户口碑,后台系统的服务质量直接影响着用户的体验。团队多年来始终保持着“小而美”的基因,快速试错与迭代成为常态。后台团队在日常业务开发的同时,需要主动寻求更多架构上的突破,提升后台服务的可用性、扩展性,以不断适应业务与团队的变化。
49 0