HDFS应用场景、原理、基本架构

简介: HDFS是什么? 易于扩展的分布式文件系统 运行在大量普通廉价机器上,提供容错机制 为大量用户提供性能不错的文件存取服务

一、HDFS是什么
源自于Google的GFS论文
发表于2003年10月
HDFS是GFS克隆版 
Hadoop Distributed File System
易于扩展的分布式文件系统
运行在大量普通廉价机器上,提供容错机制
为大量用户提供性能不错的文件存取服务

1、HDFS优点

高容错性
数据自动保存多个副本
副本丢失后,自动恢复
适合批处理
移动计算而非数据
数据位置暴露给计算框架
适合大数据处理
GB、TB、甚至PB级数据
百万规模以上的文件数量
10K+节点规模
流式文件访问
一次性写入,多次读取
保证数据一致性
可构建在廉价机器上
通过多副本提高可靠性
提供了容错和恢复机制

2、HDFS缺点

低延迟数据访问
比如毫秒级
低延迟与高吞吐率
小文件存取
占用NameNode大量内存
寻道时间超过读取时间
并发写入、文件随机修改
一个文件只能有一个写者
仅支持append

3、HDFS设计思想
image
image
image
4、HDFS数据块(block)

文件被切分成固定大小的数据块
默认数据块大小为64MB,可配置
若文件大小不到64MB,则单独存成一个block
为何数据块如此之大 
数据传输时间超过寻道时间(高吞吐率)
一个文件存储方式
按大小被切分成若干个block,存储到不同节点上
默认情况下每个block有三个副本

5、HDFS写流程
image
6、HDFS读流程
image
7、HDFS典型物理拓扑
image
8、HDFS副本放置策略
image
9、HDFS可靠性策略
image
10、HDFS不适合存储小文件

元信息存储在NameNode内存中
一个节点的内存是有限的
存取大量小文件消耗大量的寻道时间
类比拷贝大量小文件与拷贝同等大小的一个大文件
NameNode存储block数目是有限的
一个block元信息消耗大约150 byte内存
存储1亿个block,大约需要20GB内存
如果一个文件大小为10K,则1亿个文件大小仅为1TB(但要消耗掉NameNode 20GB内存)

二、HDFS访问方式

HDFS Shell命令
HDFS Java API
HDFS REST API
HDFS Fuse:实现了fuse协议
HDFS lib hdfs:C/C++访问接口
HDFS 其他语言编程API
使用thrift实现 ** 支持C++、Python、php、C#等语言

HDFS Shell命令—概览
image
请点击此处输入图片描述
将本地文件上传到HDFS上

bin/hadoop fs -copyFromLocal /local/data /hdfs/data

删除文件/目录

bin/hadoop fs -rmr /hdfs/data

创建目录

bin/hadoop fs -mkdir /hdfs/data

HDFS Shell命令—管理脚本

bin/hadoop dfsadmin

在sbin目录下

 start-all.sh
 start-dfs.sh
 start-yarn.sh
 hadoop-deamon(s).sh

单独启动某个服务

 hadoop-deamon.sh start namenode
 hadoop-deamons.sh start namenode(通过SSH登录到各个节点)

HDFS Shell命令—文件管理命令fsck
image
请点击此处输入图片描述
检查hdfs中文件的健康状况
查找缺失的块以及过少或过多副本的块
查看一个文件的所有数据块位置
删除损坏的数据块

HDFS Shell命令—数据均衡器balancer

数据块重分布

bin/start-balancer.sh -threshold <percentage of disk capacity>

percentage of disk capacity
HDFS达到平衡状态的磁盘使用率偏差值
值越低各节点越平衡,但消耗时间也更长

HDFS Shell命令—设置目录份额

限制一个目录最多使用磁盘空间

bin/hadoop dfsadmin -setSpaceQuota 1t /user/username

限制一个目录包含的最多子目录和文件数目

bin/hadoop dfsadmin -setQuota 10000 /user/username

HDFS Shell命令—增加/移除节点
image
三、HDFS Java API介绍

Configuration类:该类的对象封装了配置信息,这些配置信息来自core-.xml;
FileSystem类:文件系统类,可使用该类的方法对文件/目录进行操作。一般通过FileSystem的静态方法 get获得一个文件系统对象;
FSDataInputStream和FSDataOutputStream类:HDFS中的输入输出流。分别通过FileSystem的open方法和create方法获得。 以上类均来自java包:org.apache.hadoop.fs

HDFS Java程序举例

将本地文件拷贝到HDFS上

Configuration config = new Configuration();
FileSystem hdfs = FileSystem.get(config);
Path srcPath = new Path(srcFile);
Path dstPath = new Path(dstFile);
hdfs.copyFromLocalFile(srcPath, dstPath);

创建HDFS文件;

//byte[] buff – 文件内容
Configuration config = new Configuration();
FileSystem hdfs = FileSystem.get(config);
Path path = new Path(fileName);
FSDataOutputStream outputStream = hdfs.create(path);
outputStream.write(buff, 0, buff.length);

四、Hadoop 2.0新特性

NameNode HA
NameNode Federation
HDFS 快照(snapshot)
HDFS 缓存(in-memory cache)
HDFS ACL
异构层级存储结构(Heterogeneous Storage hierarchy)

1、HA与Federation
image
2、异构层级存储结构—背景

HDFS将所有存储介质抽象成性能相同的Disk

<property>
<name>dfs.datanode.data.dir</name>
<value>/dir0,/dir1,/dir2,/dir3</value>
</property>

存储介质种类繁多,一个集群中存在多种异构介质
 磁盘、SSD、RAM等
多种类型的任务企图同时运行在同一个Hadoop集群中
批处理,交互式处理,实时处理
不同性能要求的数据,最好存储在不同类别的存储介质上

3、异构层级存储结构—原理

<property>
<name>dfs.datanode.data.dir</name>
<value>[disk]/dir0,[disk]/dir1,[ssd]/dir2,[ssd]/dir3</value>
</property>

image
4、异构层级存储结构—原理

HDFS仅提供了一种异构存储结构,并不知道存储介质的性能;
HDFS为用户提供了API,以控制目录/文件写到什么介质上;
HDFS为管理员提供了管理工具,可限制每个用户对每种介质的可使用份额;
目前完成度不高
阶段1:DataNode支持异构存储介质(HDFS-2832,完成)
阶段2:为用户提供访问API(HDFS-5682,未完成)

五、HDFS ACL—基于POSIX ACL的实现
image
六、HDFS快照—背景

HDFS上文件和目录是不断变化的,快照可以帮助用户保存某个时刻的数据;
HDFS快照的作用
防止用户误操作删除数据
数据备份

HDFS快照—基本使用方法
image
七、HDFS缓存

HDFS自身不提供数据缓存功能,而是使用OS缓存容易内存浪费,eg.一个block三个副本同时被缓存
多种计算框架共存,均将HDFS作为共享存储系统
MapReduce:离线计算,充分利用磁盘
Impala:低延迟计算,充分利用内存
Spark:内存计算框架
HDFS应让多种混合计算类型共存一个集群中
合理的使用内存、磁盘等资源
比如,高频访问的特点文件应被尽可能长期缓存,防止置换到磁盘上

HDFS缓存—原理
image
HDFS缓存—实现情况
用户需通过命令显式的将一个目录或文件加入/移除缓存
不支持块级别的缓存
不支持自动化缓存
可设置缓存失效时间
缓存目录:仅对一级文件进行缓存
不会递归缓存所有文件与目录
以pool的形式组织缓存资源
借助YARN的资源管理方式,将缓存划分到不同pool中
每个pool有类linux权限管理机制、缓存上限、失效时间等
独立管理内存,未与资源管理系统YARN集成
用户可为每个DN设置缓存大小,该值独立于YARN

相关内容推荐:基于Dubbo的分布式系统架构实战

相关文章
|
1月前
|
Java Linux C语言
《docker基础篇:2.Docker安装》包括前提说明、Docker的基本组成、Docker平台架构图解(架构版)、安装步骤、阿里云镜像加速、永远的HelloWorld、底层原理
《docker基础篇:2.Docker安装》包括前提说明、Docker的基本组成、Docker平台架构图解(架构版)、安装步骤、阿里云镜像加速、永远的HelloWorld、底层原理
356 90
|
11天前
|
存储 SQL 缓存
MySQL原理简介—2.InnoDB架构原理和执行流程
本文介绍了MySQL中更新语句的执行流程及其背后的机制,主要包括: 1. **更新语句的执行流程**:从SQL解析到执行器调用InnoDB存储引擎接口。 2. **Buffer Pool缓冲池**:缓存磁盘数据,减少磁盘I/O。 3. **Undo日志**:记录更新前的数据,支持事务回滚。 4. **Redo日志**:确保事务持久性,防止宕机导致的数据丢失。 5. **Binlog日志**:记录逻辑操作,用于数据恢复和主从复制。 6. **事务提交机制**:包括redo日志和binlog日志的刷盘策略,确保数据一致性。 7. **后台IO线程**:将内存中的脏数据异步刷入磁盘。
|
28天前
|
存储 缓存 监控
ClickHouse 架构原理及核心特性详解
ClickHouse 是由 Yandex 开发的开源列式数据库,专为 OLAP 场景设计,支持高效的大数据分析。其核心特性包括列式存储、字段压缩、丰富的数据类型、向量化执行和分布式查询。ClickHouse 通过多种表引擎(如 MergeTree、ReplacingMergeTree、SummingMergeTree)优化了数据写入和查询性能,适用于电商数据分析、日志分析等场景。然而,它在事务处理、单条数据更新删除及内存占用方面存在不足。
286 21
|
28天前
|
存储 消息中间件 druid
Druid 架构原理及核心特性详解
Druid 是一个分布式、支持实时多维OLAP分析的列式存储数据处理系统,适用于高速实时数据读取和灵活的多维数据分析。它通过Segment、Datasource等元数据概念管理数据,并依赖Zookeeper、Hadoop和Kafka等组件实现高可用性和扩展性。Druid采用列式存储、并行计算和预计算等技术优化查询性能,支持离线和实时数据分析。尽管其存储成本较高且查询语言功能有限,但在大数据实时分析领域表现出色。
101 19
|
28天前
|
存储 SQL NoSQL
Doris 架构原理及核心特性详解
Doris 是百度内部孵化的OLAP项目,现已开源并广泛应用。它采用MPP架构、向量化执行引擎和列存储技术,提供高性能、易用性和实时数据处理能力。系统由FE(管理节点)和BE(计算与存储节点)组成,支持水平扩展和高可用性。Doris 适用于海量数据分析,尤其在电商、游戏等行业表现出色,但资源消耗较大,复杂查询优化有局限性,生态集成度有待提高。
87 15
|
25天前
|
Java 网络安全 开发工具
Git进阶笔记系列(01)Git核心架构原理 | 常用命令实战集合
通过本文,读者可以深入了解Git的核心概念和实际操作技巧,提升版本管理能力。
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
213 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
一文彻底讲透GPT架构及推理原理
本篇是作者从开发人员的视角,围绕着大模型正向推理过程,对大模型的原理的系统性总结,希望对初学者有所帮助。
|
1月前
|
容灾 网络协议 数据库
云卓越架构:云上网络稳定性建设和应用稳定性治理最佳实践
本文介绍了云上网络稳定性体系建设的关键内容,包括面向失败的架构设计、可观测性与应急恢复、客户案例及阿里巴巴的核心电商架构演进。首先强调了网络稳定性的挑战及其应对策略,如责任共担模型和冗余设计。接着详细探讨了多可用区部署、弹性架构规划及跨地域容灾设计的最佳实践,特别是阿里云的产品和技术如何助力实现高可用性和快速故障恢复。最后通过具体案例展示了秒级故障转移的效果,以及同城多活架构下的实际应用。这些措施共同确保了业务在面对网络故障时的持续稳定运行。
|
1月前
|
人工智能 运维 监控
云卓越架构:企业稳定性架构体系和AI业务场景探秘
本次分享由阿里云智能集团公共云技术服务部上海零售技术服务高级经理路志华主讲,主题为“云卓越架构:企业稳定性架构体系和AI业务场景探秘”。内容涵盖四个部分:1) 稳定性架构设计,强调高可用、可扩展性、安全性和可维护性;2) 稳定性保障体系和应急体系的建立,确保快速响应和恢复;3) 重大活动时的稳定重宝策略,如大促或新业务上线;4) AI在企业中的应用场景,包括智能编码、知识库问答、创意广告生成等。通过这些内容,帮助企业在云计算环境中构建更加稳定和高效的架构,并探索AI技术带来的创新机会。