Theano 中文文档 0.9 - 7.2.5 循环

简介: 7.2.5 循环 译者:Python 文档协作翻译小组,原文:Loop。 本文以 CC BY-NC-SA 4.0 协议发布,转载请保留作者署名和文章出处。

7.2.5 循环

译者:Python 文档协作翻译小组,原文:Loop

本文以 CC BY-NC-SA 4.0 协议发布,转载请保留作者署名和文章出处。

Python 文档协作翻译小组人手紧缺,有兴趣的朋友可以加入我们,完全公益性质。交流群:467338606。

Scan

  • 重复的一般形式,可用于循环。
  • Reductionmap(在前面的维度上循环)是scan的特殊情况。
  • 你沿着某个输入序列scan一个函数,在每个时间步骤产生输出。
  • 这个函数可以看到你的函数的以前的K个时间步长
  • sum()可以通过在一个列表上scan z + x(i)函数计算得到,其中初始状态为z=0
  • 通常,for循环可以表示为scan()操作,scan是Theano对循环最接近的实现。
  • 使用scan比使用for循环的优点:
    • 作为符号图一部分的迭代次数。
    • 最小化GPU传输(如果涉及GPU)。
    • 通过连续步骤计算梯度。
    • 使用编译的Theano函数比在Python中使用for循环稍快。
    • 可以通过检测所需的实际内存量来降低总体内存使用量。

完整的文档可以在库中找到:Scan

一个很好的ipython笔记,带有解释和更多的例子。

Scan示例:按元素计算tanh(x(t).dot(W) + b)

import theano
import theano.tensor as T
import numpy as np

# defining the tensor variables
X = T.matrix("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")

results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym), sequences=X)
compute_elementwise = theano.function(inputs=[X, W, b_sym], outputs=results)

# test values
x = np.eye(2, dtype=theano.config.floatX)
w = np.ones((2, 2), dtype=theano.config.floatX)
b = np.ones((2), dtype=theano.config.floatX)
b[1] = 2

print(compute_elementwise(x, w, b))

# comparison with numpy
print(np.tanh(x.dot(w) + b))
[[ 0.96402758  0.99505475]
 [ 0.96402758  0.99505475]]
[[ 0.96402758  0.99505475]
 [ 0.96402758  0.99505475]]

Scan示例:计算序列x(t) = tanh(x(t - 1).dot(W) + y(t).dot(U) + p(T - t).dot(V))

import theano
import theano.tensor as T
import numpy as np

# define tensor variables
X = T.vector("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")
U = T.matrix("U")
Y = T.matrix("Y")
V = T.matrix("V")
P = T.matrix("P")

results, updates = theano.scan(lambda y, p, x_tm1: T.tanh(T.dot(x_tm1, W) + T.dot(y, U) + T.dot(p, V)),
          sequences=[Y, P[::-1]], outputs_info=[X])
compute_seq = theano.function(inputs=[X, W, Y, U, P, V], outputs=results)

# test values
x = np.zeros((2), dtype=theano.config.floatX)
x[1] = 1
w = np.ones((2, 2), dtype=theano.config.floatX)
y = np.ones((5, 2), dtype=theano.config.floatX)
y[0, :] = -3
u = np.ones((2, 2), dtype=theano.config.floatX)
p = np.ones((5, 2), dtype=theano.config.floatX)
p[0, :] = 3
v = np.ones((2, 2), dtype=theano.config.floatX)

print(compute_seq(x, w, y, u, p, v))

# comparison with numpy
x_res = np.zeros((5, 2), dtype=theano.config.floatX)
x_res[0] = np.tanh(x.dot(w) + y[0].dot(u) + p[4].dot(v))
for i in range(1, 5):
    x_res[i] = np.tanh(x_res[i - 1].dot(w) + y[i].dot(u) + p[4-i].dot(v))
print(x_res)
[[-0.99505475 -0.99505475]
 [ 0.96471973  0.96471973]
 [ 0.99998585  0.99998585]
 [ 0.99998771  0.99998771]
 [ 1\.          1\.        ]]
[[-0.99505475 -0.99505475]
 [ 0.96471973  0.96471973]
 [ 0.99998585  0.99998585]
 [ 0.99998771  0.99998771]
 [ 1\.          1\.        ]]

Scan示例:计算X行的范数

import theano
import theano.tensor as T
import numpy as np

# define tensor variable
X = T.matrix("X")
results, updates = theano.scan(lambda x_i: T.sqrt((x_i ** 2).sum()), sequences=[X])
compute_norm_lines = theano.function(inputs=[X], outputs=results)

# test value
x = np.diag(np.arange(1, 6, dtype=theano.config.floatX), 1)
print(compute_norm_lines(x))

# comparison with numpy
print(np.sqrt((x ** 2).sum(1)))
[ 1\.  2\.  3\.  4\.  5\.  0.]
[ 1\.  2\.  3\.  4\.  5\.  0.]

Scan示例:计算X列的范数

import theano
import theano.tensor as T
import numpy as np

# define tensor variable
X = T.matrix("X")
results, updates = theano.scan(lambda x_i: T.sqrt((x_i ** 2).sum()), sequences=[X.T])
compute_norm_cols = theano.function(inputs=[X], outputs=results)

# test value
x = np.diag(np.arange(1, 6, dtype=theano.config.floatX), 1)
print(compute_norm_cols(x))

# comparison with numpy
print(np.sqrt((x ** 2).sum(0)))
[ 0\.  1\.  2\.  3\.  4\.  5.]
[ 0\.  1\.  2\.  3\.  4\.  5.]

扫描示例:计算X的迹

import theano
import theano.tensor as T
import numpy as np
floatX = "float32"

# define tensor variable
X = T.matrix("X")
results, updates = theano.scan(lambda i, j, t_f: T.cast(X[i, j] + t_f, floatX),
                  sequences=[T.arange(X.shape[0]), T.arange(X.shape[1])],
                  outputs_info=np.asarray(0., dtype=floatX))
result = results[-1]
compute_trace = theano.function(inputs=[X], outputs=result)

# test value
x = np.eye(5, dtype=theano.config.floatX)
x[0] = np.arange(5, dtype=theano.config.floatX)
print(compute_trace(x))

# comparison with numpy
print(np.diagonal(x).sum())
4.0
4.0

Scan示例:计算序列x(t) = x(t - 2).dot(U) + x(t - 1).dot(V) + tanh(x(t - 1).dot(W) + b)

import theano
import theano.tensor as T
import numpy as np

# define tensor variables
X = T.matrix("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")
U = T.matrix("U")
V = T.matrix("V")
n_sym = T.iscalar("n_sym")

results, updates = theano.scan(lambda x_tm2, x_tm1: T.dot(x_tm2, U) + T.dot(x_tm1, V) + T.tanh(T.dot(x_tm1, W) + b_sym),
                    n_steps=n_sym, outputs_info=[dict(initial=X, taps=[-2, -1])])
compute_seq2 = theano.function(inputs=[X, U, V, W, b_sym, n_sym], outputs=results)

# test values
x = np.zeros((2, 2), dtype=theano.config.floatX) # the initial value must be able to return x[-2]
x[1, 1] = 1
w = 0.5 * np.ones((2, 2), dtype=theano.config.floatX)
u = 0.5 * (np.ones((2, 2), dtype=theano.config.floatX) - np.eye(2, dtype=theano.config.floatX))
v = 0.5 * np.ones((2, 2), dtype=theano.config.floatX)
n = 10
b = np.ones((2), dtype=theano.config.floatX)

print(compute_seq2(x, u, v, w, b, n))

# comparison with numpy
x_res = np.zeros((10, 2))
x_res[0] = x[0].dot(u) + x[1].dot(v) + np.tanh(x[1].dot(w) + b)
x_res[1] = x[1].dot(u) + x_res[0].dot(v) + np.tanh(x_res[0].dot(w) + b)
x_res[2] = x_res[0].dot(u) + x_res[1].dot(v) + np.tanh(x_res[1].dot(w) + b)
for i in range(2, 10):
    x_res[i] = (x_res[i - 2].dot(u) + x_res[i - 1].dot(v) +
                np.tanh(x_res[i - 1].dot(w) + b))
print(x_res)
[[  1.40514825   1.40514825]
 [  2.88898899   2.38898899]
 [  4.34018291   4.34018291]
 [  6.53463142   6.78463142]
 [  9.82972243   9.82972243]
 [ 14.22203814  14.09703814]
 [ 20.07439936  20.07439936]
 [ 28.12291843  28.18541843]
 [ 39.1913681   39.1913681 ]
 [ 54.28407732  54.25282732]]
[[  1.40514825   1.40514825]
 [  2.88898899   2.38898899]
 [  4.34018291   4.34018291]
 [  6.53463142   6.78463142]
 [  9.82972243   9.82972243]
 [ 14.22203814  14.09703814]
 [ 20.07439936  20.07439936]
 [ 28.12291843  28.18541843]
 [ 39.1913681   39.1913681 ]
 [ 54.28407732  54.25282732]]

Scan示例:计算y = tanh(v.dot(A)) wrt x的Jacobian

import theano
import theano.tensor as T
import numpy as np

# define tensor variables
v = T.vector()
A = T.matrix()
y = T.tanh(T.dot(v, A))
results, updates = theano.scan(lambda i: T.grad(y[i], v), sequences=[T.arange(y.shape[0])])
compute_jac_t = theano.function([A, v], results, allow_input_downcast=True) # shape (d_out, d_in)

# test values
x = np.eye(5, dtype=theano.config.floatX)[0]
w = np.eye(5, 3, dtype=theano.config.floatX)
w[2] = np.ones((3), dtype=theano.config.floatX)
print(compute_jac_t(w, x))

# compare with numpy
print(((1 - np.tanh(x.dot(w)) ** 2) * w).T)
[[ 0.41997434  0\.          0.41997434  0\.          0\.        ]
 [ 0\.          1\.          1\.          0\.          0\.        ]
 [ 0\.          0\.          1\.          0\.          0\.        ]]
[[ 0.41997434  0\.          0.41997434  0\.          0\.        ]
 [ 0\.          1\.          1\.          0\.          0\.        ]
 [ 0\.          0\.          1\.          0\.          0\.        ]]

注意,我们需要迭代y的索引,而不是y的元素。原因是scan为其内部函数创建一个占位符变量,并且此占位符变量与将替换它的变量不具有相同的依赖关系。

Scan示例:Scan期间累积循环次数

import theano
import theano.tensor as T
import numpy as np

# define shared variables
k = theano.shared(0)
n_sym = T.iscalar("n_sym")

results, updates = theano.scan(lambda:{k:(k + 1)}, n_steps=n_sym)
accumulator = theano.function([n_sym], [], updates=updates, allow_input_downcast=True)

k.get_value()
accumulator(5)
k.get_value()

Scan示例:计算tanh(v.dot(W) + b) * d,其中d是二项式

import theano
import theano.tensor as T
import numpy as np

# define tensor variables
X = T.matrix("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")

# define shared random stream
trng = T.shared_randomstreams.RandomStreams(1234)
d=trng.binomial(size=W[1].shape)

results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym) * d, sequences=X)
compute_with_bnoise = theano.function(inputs=[X, W, b_sym], outputs=results,
                          updates=updates, allow_input_downcast=True)
x = np.eye(10, 2, dtype=theano.config.floatX)
w = np.ones((2, 2), dtype=theano.config.floatX)
b = np.ones((2), dtype=theano.config.floatX)

print(compute_with_bnoise(x, w, b))
[[ 0.96402758  0\.        ]
 [ 0\.          0.96402758]
 [ 0\.          0\.        ]
 [ 0.76159416  0.76159416]
 [ 0.76159416  0\.        ]
 [ 0\.          0.76159416]
 [ 0\.          0.76159416]
 [ 0\.          0.76159416]
 [ 0\.          0\.        ]
 [ 0.76159416  0.76159416]]

注意,如果你想使用一个在scan循环中不会更新的随机变量d,你应该将此变量作为non_sequences参数传递。

Scan示例:计算pow(A, k)

import theano
import theano.tensor as T
theano.config.warn.subtensor_merge_bug = False

k = T.iscalar("k")
A = T.vector("A")

def inner_fct(prior_result, B):
    return prior_result * B

# Symbolic description of the result
result, updates = theano.scan(fn=inner_fct,
                            outputs_info=T.ones_like(A),
                            non_sequences=A, n_steps=k)

# Scan has provided us with A ** 1 through A ** k.  Keep only the last
# value. Scan notices this and does not waste memory saving them.
final_result = result[-1]

power = theano.function(inputs=[A, k], outputs=final_result,
                      updates=updates)

print(power(range(10), 2))
[  0\.   1\.   4\.   9\.  16\.  25\.  36\.  49\.  64\.  81.]

Scan示例:计算多项式

import numpy
import theano
import theano.tensor as T
theano.config.warn.subtensor_merge_bug = False

coefficients = theano.tensor.vector("coefficients")
x = T.scalar("x")
max_coefficients_supported = 10000

# Generate the components of the polynomial
full_range=theano.tensor.arange(max_coefficients_supported)
components, updates = theano.scan(fn=lambda coeff, power, free_var:
                                   coeff * (free_var ** power),
                                outputs_info=None,
                                sequences=[coefficients, full_range],
                                non_sequences=x)

polynomial = components.sum()
calculate_polynomial = theano.function(inputs=[coefficients, x],
                                     outputs=polynomial)

test_coeff = numpy.asarray([1, 0, 2], dtype=numpy.float32)
print(calculate_polynomial(test_coeff, 3))
19.0

练习

运行这两个示例。

修改并执行多项式示例以通过scan完成reduction。

Solution

相关文章
|
6月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(三十四)(5)
Transformers 4.37 中文文档(三十四)
24 0
|
6月前
|
机器学习/深度学习 自然语言处理 PyTorch
Transformers 4.37 中文文档(三十四)(3)
Transformers 4.37 中文文档(三十四)
30 0
|
6月前
|
PyTorch 测试技术 算法框架/工具
Transformers 4.37 中文文档(三十四)(1)
Transformers 4.37 中文文档(三十四)
29 0
|
6月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(三十四)(4)
Transformers 4.37 中文文档(三十四)
24 0
|
6月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(三十四)(2)
Transformers 4.37 中文文档(三十四)
27 0
|
6月前
|
算法框架/工具 异构计算 索引
Transformers 4.37 中文文档(三十六)(5)
Transformers 4.37 中文文档(三十六)
31 0
|
存储 数据安全/隐私保护 索引
Python学习笔记第三十八天(NumPy 迭代数组)
Python学习笔记第三十八天讲解控制遍历顺序、修改数组中元素的值、使用外部循环、广播迭代的用法。
133 0
Python学习笔记第三十八天(NumPy 迭代数组)
|
索引 Python
Python学习笔记第八天(元组)
Python学习笔记第八天讲解元组、元组运算符、元组内置函数的用法。
121 0
Python学习笔记第八天(元组)
不可变序列:元组 | Python从入门到精通:进阶篇之十一
元组是一个不可变序列。它的操作方式基本上和列表是一致的。
不可变序列:元组 | Python从入门到精通:进阶篇之十一
|
算法 开发者 Python
详解生成器 | 手把手教你入门Python之八十一
利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据。为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator)。生成器是一类特殊的迭代器。

相关实验场景

更多