Transformers 4.37 中文文档(三十四)(1)

简介: Transformers 4.37 中文文档(三十四)


原文:huggingface.co/docs/transformers

FNet

原文链接: huggingface.co/docs/transformers/v4.37.2/en/model_doc/fnet

概述

FNet 模型由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 在 FNet: Mixing Tokens with Fourier Transforms 中提出。该模型用傅立叶变换替换了 BERT 模型中的自注意力层,仅返回变换的实部。该模型比 BERT 模型快得多,因为它具有更少的参数并且更节省内存。该模型在 GLUE 基准测试中达到了约 92-97% 的准确率,并且比 BERT 模型训练速度更快。论文的摘要如下:

我们展示了 Transformer  编码器架构可以通过用简单的线性变换替换自注意力子层来加速,且准确性损失有限。这些线性混合器,以及前馈层中的标准非线性,在几个文本分类任务中证明了在建模语义关系方面的能力。最令人惊讶的是,我们发现将  Transformer 编码器中的自注意力子层替换为标准的、无参数的傅立叶变换,在 GLUE 基准测试中达到了 BERT 对应模型准确率的  92-97%,但在 GPU 上训练速度快 80%,在 TPU 上快 70%,在标准的 512 输入长度下。在更长的输入长度下,我们的 FNet  模型速度显著更快:与 Long Range Arena 基准测试中的“高效”Transformer 相比,FNet 在 GPU  上与最准确的模型匹敌,同时在所有序列长度上超过最快的模型(在 TPU 上相对较短的长度)。最后,FNet  具有轻量级的内存占用,并且在较小的模型尺寸上特别高效;对于固定的速度和准确性预算,小型的 FNet 模型胜过 Transformer 对应模型。

该模型由 gchhablani 贡献。原始代码可以在 这里 找到。

使用提示

该模型在训练时没有使用注意力掩码,因为它基于傅立叶变换。该模型在最大序列长度为 512 的情况下进行训练,其中包括填充标记。因此,强烈建议在微调和推理时使用相同的最大序列长度。

资源

  • 文本分类任务指南
  • 标记分类任务指南
  • 问答任务指南
  • 遮蔽语言建模任务指南
  • 多选任务指南

FNetConfig

class transformers.FNetConfig

<来源>

( vocab_size = 32000 hidden_size = 768 num_hidden_layers = 12 intermediate_size = 3072 hidden_act = 'gelu_new' hidden_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 4 initializer_range = 0.02 layer_norm_eps = 1e-12 use_tpu_fourier_optimizations = False tpu_short_seq_length = 512 pad_token_id = 3 bos_token_id = 1 eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, optional, defaults to 32000) — FNet 模型的词汇表大小。定义了在调用 FNetModel 或 TFFNetModel 时可以表示的不同标记的数量。
  • hidden_size (int, optional, defaults to 768) — 编码器层和池化器层的维度。
  • num_hidden_layers (int, optional, defaults to 12) — Transformer 编码器中的隐藏层数量。
  • intermediate_size (int, optional, defaults to 3072) — Transformer 编码器中“中间”(即前馈)层的维度。
  • hidden_act (str or function, optional, defaults to "gelu_new") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu", "relu", "selu""gelu_new"
  • hidden_dropout_prob (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。
  • max_position_embeddings (int, optional, defaults to 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512、1024 或 2048)。
  • type_vocab_size (int, optional, defaults to 4) — 在调用 FNetModel 或 TFFNetModel 时传递的 token_type_ids 的词汇表大小。
  • initializer_range (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_eps (float, optional, defaults to 1e-12) — 层归一化层使用的 epsilon。
  • use_tpu_fourier_optimizations (bool, optional, defaults to False) — 决定是否使用 TPU 优化的 FFT。如果为 True,模型将偏向于轴向 FFT 变换。对于 GPU/CPU 硬件,请设置为 False,在这种情况下将使用 n 维 FFT。
  • tpu_short_seq_length (int, optional, defaults to 512) — 在使用 TPU 时模型期望的序列长度。当 use_tpu_fourier_optimizations 设置为 True 且输入序列长度短于或等于 4096 个标记时,将用于初始化 DFT 矩阵。

这是用于存储 FNetModel 配置的配置类。根据指定的参数实例化一个 FNet 模型,定义模型架构。使用默认值实例化配置将产生类似于 FNet google/fnet-base 架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import FNetConfig, FNetModel
>>> # Initializing a FNet fnet-base style configuration
>>> configuration = FNetConfig()
>>> # Initializing a model (with random weights) from the fnet-base style configuration
>>> model = FNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

FNetTokenizer

class transformers.FNetTokenizer

<来源>

( vocab_file do_lower_case = False remove_space = True keep_accents = True unk_token = '<unk>' sep_token = '[SEP]' pad_token = '<pad>' cls_token = '[CLS]' mask_token = '[MASK]' sp_model_kwargs: Optional = None **kwargs )

参数

  • vocab_file (str) — 包含实例化标记器所需词汇表的 SentencePiece 文件(通常具有 .spm 扩展名)。
  • do_lower_case (bool, optional, defaults to False) — 在进行标记化时是否将输入转换为小写。
  • remove_space (bool, optional, defaults to True) — 在标记化时是否去除文本中的空格(删除字符串前后的多余空格)。
  • keep_accents (bool, optional, defaults to True) — 在进行标记化时是否保留重音符号。
  • unk_token (str, optional, defaults to "") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。
  • sep_token (str, optional, defaults to "[SEP]") — 分隔符标记,在从多个序列构建序列时使用,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • pad_token (str, optional, defaults to "") — 用于填充的标记,例如在批处理不同长度的序列时使用。
  • cls_token (str, optional, defaults to "[CLS]") — 用于序列分类时使用的分类器标记(对整个序列进行分类,而不是对每个标记进行分类)。当使用特殊标记构建序列时,它是序列的第一个标记。
  • mask_token (str, optional, defaults to "[MASK]") — 用于屏蔽值的标记。在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • sp_model_kwargsdict可选)- 将传递给SentencePieceProcessor.__init__()方法。可以使用SentencePiece 的 Python 包装器,其中包括设置:
  • enable_sampling:启用子词正则化。
  • nbest_size:unigram 的抽样参数。对于 BPE-Dropout 无效。
  • nbest_size = {0,1}:不执行抽样。
  • nbest_size > 1:从 nbest_size 结果中抽样。
  • nbest_size < 0:假设 nbest_size 是无限的,并使用前向过滤和后向抽样算法从所有假设(格)中抽样。
  • alpha:用于 unigram 抽样的平滑参数,以及用于 BPE-dropout 的合并操作的丢弃概率。
  • sp_modelSentencePieceProcessor)- 用于每次转换(字符串、标记和 ID)的SentencePiece处理器。

构建一个 FNet 标记器。改编自 AlbertTokenizer。基于SentencePiece。此标记器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])- 将添加特殊标记的 ID 列表。
  • token_ids_1List[int]可选)- 序列对的第二个 ID 列表(可选)。

返回

List[int]

具有适当特殊标记的输入 ID 列表。

通过连接和添加特殊标记,从序列或序列对构建用于序列分类任务的模型输入。FNet 序列具有以下格式:

  • 单个序列:[CLS] X [SEP]
  • 序列对:[CLS] A [SEP] B [SEP]
get_special_tokens_mask

<来源>

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])- ID 列表。
  • token_ids_1List[int]可选)- 序列对的第二个 ID 列表(可选)。
  • already_has_special_tokensbool可选,默认为False)- 标记列表是否已经格式化为模型的特殊标记。

返回

List[int]

一个整数列表,范围为[0, 1]:1 表示特殊标记,0 表示序列标记。

从没有添加特殊标记的标记列表中检索序列 id。在使用标记器prepare_for_model方法添加特殊标记时调用此方法。

create_token_type_ids_from_sequences

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])- ID 列表。
  • token_ids_1List[int]可选)- 序列对的第二个 ID 列表(可选)。

返回

List[int]

根据给定序列的标记类型 ID 列表。

从传递的两个序列创建一个掩码,用于在序列对分类任务中使用。一个 FNet 序列

序列对掩码的格式如下:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence |

如果token_ids_1None,则此方法仅返回掩码的第一部分(0)。

save_vocabulary

<来源>

( save_directory: str filename_prefix: Optional = None )

FNetTokenizerFast

class transformers.FNetTokenizerFast

<来源>

( vocab_file = None tokenizer_file = None do_lower_case = False remove_space = True keep_accents = True unk_token = '<unk>' sep_token = '[SEP]' pad_token = '<pad>' cls_token = '[CLS]' mask_token = '[MASK]' **kwargs )

参数

  • vocab_filestr)- 包含实例化标记器所需词汇的SentencePiece文件(通常具有*.spm*扩展名)。
  • do_lower_casebool可选,默认为False)— 在标记化时是否将输入转换为小写。
  • remove_spacebool可选,默认为True)— 在标记化时是否去除文本中的空格(删除字符串前后的多余空格)。
  • keep_accentsbool可选,默认为True)— 在标记化时是否保留重音。
  • unk_tokenstr可选,默认为"")— 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。
  • sep_tokenstr可选,默认为"[SEP]")— 分隔符标记,在从多个序列构建序列时使用,例如用于序列分类的两个序列或用于问题回答的文本和问题。它还用作使用特殊标记构建的序列的最后一个标记。
  • pad_tokenstr可选,默认为"")— 用于填充的标记,例如在批处理不同长度的序列时。
  • cls_tokenstr可选,默认为"[CLS]")— 分类器标记,用于进行序列分类(对整个序列进行分类,而不是对每个标记进行分类)。在使用特殊标记构建时,它是序列的第一个标记。
  • mask_tokenstr可选,默认为"[MASK]")— 用于屏蔽值的标记。这是在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。

构建一个“快速”FNetTokenizer(由 HuggingFace 的tokenizers库支持)。改编自 AlbertTokenizerFast。基于Unigram。此标记器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息

build_inputs_with_special_tokens

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])— 要添加特殊标记的 ID 列表
  • token_ids_1List[int]可选)— 序列对的可选第二个 ID 列表。

返回

List[int]

具有适当特殊标记的 input IDs 列表。

从序列或序列对构建模型输入,用于序列分类任务,通过连接和添加特殊标记。一个 FNet 序列具有以下格式:

  • 单个序列:[CLS] X [SEP]
  • 序列对:[CLS] A [SEP] B [SEP]
create_token_type_ids_from_sequences

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])— ID 列表。
  • token_ids_1List[int]可选)— 序列对的可选第二个 ID 列表。

返回

List[int]

根据给定序列的标记类型 ID 列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。一个 FNet

序列对掩码具有以下格式:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1 为 None,则仅返回掩码的第一部分(0s)。

FNetModel

class transformers.FNetModel

<来源>

( config add_pooling_layer = True )

参数

  • config (FNetConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

裸 FNet 模型变压器输出原始隐藏状态,没有特定的顶部头。该模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

该模型可以作为编码器运行,遵循 FNet: Mixing Tokens with Fourier Transforms 中描述的架构,作者为 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon。

forward

< source >

( input_ids: Optional = None token_type_ids: Optional = None position_ids: Optional = None inputs_embeds: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引选择在 [0, 1] 中:
  • 0 对应于 句子 A 标记,
  • 1 对应于 句子 B 标记。
  • 什么是令牌类型 ID?
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。
    什么是位置 ID?
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,这将很有用,而不是使用模型的内部嵌入查找矩阵。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=Falseconfig.return_dict=False 时)包含不同元素,具体取决于配置(FNetConfig)和输入。

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)—形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,如果模型有一个嵌入层,+一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FNetModel 前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FNetModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetModel.from_pretrained("google/fnet-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

FNetForPreTraining

class transformers.FNetForPreTraining

<来源>

( config )

参数

  • config(FNetConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

FNet 模型在预训练期间在顶部有两个头部:一个掩码语言建模头部和一个下一个句子预测(分类)头部。

这个模型是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

前进

<来源>

( input_ids: Optional = None token_type_ids: Optional = None position_ids: Optional = None inputs_embeds: Optional = None labels: Optional = None next_sentence_label: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.fnet.modeling_fnet.FNetForPreTrainingOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记的位置的索引在位置嵌入中。在范围[0, config.max_position_embeddings - 1]中选择。
    什么是位置 ID?
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以直接传递一个嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这是有用的。
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。
  • 标签torch.LongTensor,形状为(batch_size, sequence_length)可选)— 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]范围内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]范围内的标记。
  • next_sentence_label(形状为(batch_size,)torch.LongTensor可选)— 用于计算下一个序列预测(分类)损失的标签。输入应为一个序列对(参见input_ids文档字符串)。索引应在[0, 1]范围内:
  • 0 表示序列 B 是序列 A 的延续,
  • 1 表示序列 B 是一个随机序列。
  • kwargsDict[str, any],可选,默认为*{}*)— 用于隐藏已弃用的旧参数。

返回

transformers.models.fnet.modeling_fnet.FNetForPreTrainingOutputtuple(torch.FloatTensor)

一个transformers.models.fnet.modeling_fnet.FNetForPreTrainingOutput或一个torch.FloatTensor元组(如果传递return_dict=False或当config.return_dict=False时)包含根据配置(FNetConfig)和输入的各种元素。

  • loss可选,当提供labels时返回,形状为(1,)torch.FloatTensor)— 总损失,作为掩码语言建模损失和下一个序列预测(分类)损失的总和。
  • prediction_logits(形状为(batch_size, sequence_length, config.vocab_size)torch.FloatTensor)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • seq_relationship_logits(形状为(batch_size, 2)torch.FloatTensor)— 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。模型在每一层输出的隐藏状态加上初始嵌入输出。

FNetForPreTraining 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FNetForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForPreTraining.from_pretrained("google/fnet-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

FNetForMaskedLM

class transformers.FNetForMaskedLM

<来源>

( config )

参数

  • config(FNetConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

FNet 模型顶部带有语言建模头。此模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有信息。

forward

< source >

( input_ids: Optional = None token_type_ids: Optional = None position_ids: Optional = None inputs_embeds: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 指示输入的第一部分和第二部分的段标记索引。索引在 [0, 1] 中选择:
  • 0 对应于 句子 A 标记,
  • 1 对应于 句子 B 标记。
  • 什么是标记类型 ID?
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。
    什么是位置 ID?
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示而不是 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失仅计算具有标签在 [0, ..., config.vocab_size] 中的标记。

返回

transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或 torch.FloatTensor 元组(如果传递 return_dict=Falseconfig.return_dict=False)包含根据配置(FNetConfig)和输入的不同元素。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供 labels 时返回) — 掩码语言建模(MLM)损失。
  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(如果模型有嵌入层,则为嵌入输出的一个 + 每层输出的一个)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在自注意力头中用于计算加权平均值的注意力权重。

FNetForMaskedLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FNetForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForMaskedLM.from_pretrained("google/fnet-base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)

FNetForNextSentencePrediction

class transformers.FNetForNextSentencePrediction

< source >

( config )

参数

  • config (FNetConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法来加载模型权重。

带有下一个句子预测(分类)头部的 FNet 模型。此模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

< source >

( input_ids: Optional = None token_type_ids: Optional = None position_ids: Optional = None inputs_embeds: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → export const metadata = 'undefined';transformers.modeling_outputs.NextSentencePredictorOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 输入序列标记在词汇表中的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), 可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引选择在 [0, 1]
  • 0 对应于 句子 A 标记,
  • 1 对应于 句子 B 标记。
  • 什么是标记类型 ID?
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
    什么是位置 ID?
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), 可选) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这很有用,而不是使用模型的内部嵌入查找矩阵。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算下一个序列预测(分类)损失的标签。输入应该是一个序列对(参见input_ids文档字符串)。索引应该在[0, 1]范围内:
  • 0 表示序列 B 是序列 A 的延续,
  • 1 表示序列 B 是一个随机序列。

返回

transformers.modeling_outputs.NextSentencePredictorOutput 或torch.FloatTensor元组

一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(FNetConfig)和输入的各种元素。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供next_sentence_label时返回) — 下一个序列预测(分类)损失。
  • logits (torch.FloatTensor of shape (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(在 SoftMax 之前的 True/False 继续分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForNextSentencePrediction 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会负责运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FNetForNextSentencePrediction
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForNextSentencePrediction.from_pretrained("google/fnet-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random

FNetForSequenceClassification

class transformers.FNetForSequenceClassification

<来源>

( config )

参数

  • config (FNetConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

FNet 模型变压器,顶部带有一个序列分类/回归头(在池化输出之上的线性层),例如用于 GLUE 任务。

这个模型是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

<来源>

( input_ids: Optional = None token_type_ids: Optional = None position_ids: Optional = None inputs_embeds: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • token_type_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于句子 A标记。
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
    什么是位置 ID?
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 可选地,您可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这是有用的,而不是使用模型的内部嵌入查找矩阵。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为(batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]中。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutput 或torch.FloatTensor元组

一个 transformers.modeling_outputs.SequenceClassifierOutput 或torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(FNetConfig)和输入的各种元素。

  • loss (torch.FloatTensor,形状为(1,)可选,当提供labels时返回) — 分类(如果config.num_labels==1则为回归)损失。
  • logits (torch.FloatTensor,形状为(batch_size, config.num_labels)) — 分类(如果config.num_labels==1则为回归)得分(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个 + 每层的输出的一个)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

单标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, FNetForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForSequenceClassification.from_pretrained("google/fnet-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FNetForSequenceClassification.from_pretrained("google/fnet-base", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, FNetForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForSequenceClassification.from_pretrained("google/fnet-base", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FNetForSequenceClassification.from_pretrained(
...     "google/fnet-base", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss


Transformers 4.37 中文文档(三十四)(2)https://developer.aliyun.com/article/1564746

相关文章
|
6月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(二十七)(2)
Transformers 4.37 中文文档(二十七)
118 0
|
6月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(二十二)(4)
Transformers 4.37 中文文档(二十二)
34 3
|
6月前
|
机器学习/深度学习 自然语言处理 PyTorch
Transformers 4.37 中文文档(三十四)(3)
Transformers 4.37 中文文档(三十四)
30 0
|
6月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(三十四)(4)
Transformers 4.37 中文文档(三十四)
24 0
|
6月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(三十四)(5)
Transformers 4.37 中文文档(三十四)
24 0
|
6月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(三十四)(2)
Transformers 4.37 中文文档(三十四)
27 0
|
6月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(三十一)(4)
Transformers 4.37 中文文档(三十一)
43 0
|
6月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(三十一)(5)
Transformers 4.37 中文文档(三十一)
42 0
|
6月前
|
存储 PyTorch TensorFlow
Transformers 4.37 中文文档(三十一)(1)
Transformers 4.37 中文文档(三十一)
53 0
|
6月前
|
缓存 数据挖掘 PyTorch
Transformers 4.37 中文文档(三十一)(3)
Transformers 4.37 中文文档(三十一)
44 0