周志华四问大学人工智能教育:不应在现有学科框架下修修补补

简介:

人工智能在全世界都受到了高度关注。国务院在2017年7月印发了《新一代人工智能发展规划》,教育部2018年4月制定了《高等学校人工智能创新行动计划》,明确提出要“支持高校在计算机科学与技术学科设置人工智能学科方向,推进人工智能领域一级学科建设”“加大人工智能领域人才培养力度”,为我国新一代人工智能发展提供战略支撑。

人工智能教育关注的应该是弱人工智能

关于人工智能,长期存在两种不同的目标或理念。一种是希望借鉴人类的智能行为,研制出更好的工具以减轻人类智力劳动,一般称为“弱人工智能”;另一种是希望研制出达到甚至超越人类智慧水平的人造物,其研究目标具有心智和意识、能根据自己的意图开展行动,一般称为“强人工智能”。

国际主流人工智能学界所持的目标是弱人工智能。人工智能技术现在所取得的进展和成功,是缘于“弱人工智能”而不是“强人工智能”的研究。用国际人工智能联合会前主席、牛津大学伍尔德里奇教授的话来说,强人工智能“几乎没有进展”,甚至“几乎没有严肃的活动”。

事实上,强人工智能还涉及科学研究的伦理问题,这也是主流人工智能学界不往这个方向努力的原因之一。霍金等人所担忧的“人工智能有可能是人类文明史的终结”,实质就是对强人工智能的担忧。因为具有“自主意识”、能力全面超越人类的,将不再是能被人类控制的“工具”,无法保证它的“利益”与人类一致。

人工智能教育所关注的应该是有助于为人类社会谋福祉的、有助于解决产业创新需求的、有助于学生未来职业发展的内容,显然,关注的应该是弱人工智能。

“人工智能”还是“智能科学”?

目前已有“智能科学与技术”专业,能否代替“人工智能”呢?

顾名思义,“智能科学与技术”所关注的是“智能”。“人工智能”和“智能”的关系,类似于“飞机(人工鸟)”和“鸟”的关系。研究飞机显然不同于研究鸟科学。鸟科学本身很重要,但它并不是培养飞机制造者所必须掌握的科学知识,对鸟没弄清楚并不妨碍造飞机,飞机的飞行方式也不需与鸟的飞行方式相同。

事实上,人工智能更多的是与计算机科学、数学、工程学有关,而智能科学本身则更多是与认知科学、神经科学、脑科学有关。人工智能人才培养的迫切性,主要源于人工智能产业蓬勃发展所导致的对人工智能人才的旺盛需求。

习近平总书记在十九大报告中强调,要推动“人工智能和实体经济的深度融合”。以计算机科学、数学、工程学为主要基础的人工智能科学技术目前已能在实体经济中发挥作用,而以认知科学、神经科学、脑科学为主要基础的智能科学技术,与实体经济的深度融合似乎还为时尚早。

对创办一流大学人工智能教育而言,目标应该是高水平的建筑设计师、土木工程师,乃至于建筑大师。简而言之,我们的目标应该是培养在人工智能领域具备源头创新能力、具备解决企业关键技术难题能力的人才。

人工智能人才需要何种知识结构?

人工智能所要解决的通常是涉及不确定性的复杂任务,从其任务求解过程来看,首先要对复杂现实进行抽象建模,然后对模型算法分析设计,进行软件程序实现,基于强力计算平台进行高效扩展,再通过试用反馈迭代改善。这决定了高水平人工智能人才需要:数学基础好、计算/软件程序功底扎实、人工智能专业知识全面。

首先,无论是在抽象建模还是模型算法分析设计环节,都需要依赖良好的数学基础,因为人工智能所面对的问题千变万化,这导致了其所涉及的数学工具种类多样。事实上,人工智能的核心领域——机器学习是计算机科学中对数学基础要求最高的分支之一。

第二,复杂现实任务通常可以从多种角度进行抽象,而不同的抽象将导致巨大的差异。抽象出的问题是否可计算?从程序代码的角度是否易实现?从计算平台的角度是否便于高效处理?…… 回答这些问题需要在算法分析/程序设计/计算系统方面具备扎实的基础。事实上,对一些现代大型人工智能程序而言,甚至连高维数组的存储顺序都需做到优化,这如果没有扎实的计算/软件程序功底显然是不行的。

第三,在解决现实的人工智能应用任务时,往往同时涉及多种人工智能专业知识,需有效进行融合发挥。因此,高水平的、能解决企业关键技术难题的人工智能人才,必须具备全面的人工智能专业知识。这就引出了下一个问题:

人工智能自身的专业知识有哪些?

不妨简单回顾一下人工智能这个学科领域的发展历程。

目前一般认为,人工智能学科正式诞生于1956年美国达特茅斯会议。这个会议的参加者包括后来的图灵奖得主麦卡锡、闵斯基和信息论之父香农等人。会议发起人麦卡锡提议以“人工智能”作为该学科的名称,因此麦卡锡被尊为“人工智能之父”。从那时起,如果以主流人工智能学界的关注重点进行划分,则人工智能的发展历程大致可分为三个阶段:1956年至1960年代中后期的“推理期”,1970年代至1980年代中期的“知识期”,以及1990年代至今的“学习期”。推理期关注的重点是基于逻辑的自动推理,知识期关注的重点是知识工程,学习期关注的重点则是机器学习。人工智能领域迄今共有8位学者获得图灵奖,他们是人工智能诞生期的麦卡锡和闵斯基,推理期的西蒙和纽厄尔,知识期的费根鲍姆和芮迪,以及学习期的维利昂特和珀尔。

上述学科历程直接决定了人工智能专业知识在“内核基础层”主要包括机器学习(学习期的核心)、知识表示与处理(推理期与知识期核心的融合)。在此之上,“支撑技术层”包括模式识别与计算机视觉、自然语言处理、自动规划、多智能体系统、启发式搜索、计算智能、语音信息处理等。再往上的“平台系统层”则包括机器学习系统平台(如Tensorflow等)、人工智能程序设计(如LISP、Pathon等)、智能系统、机器人等。更往上还有与其他学科的“交叉应用层”。

可以看出,人工智能与其他的一些 “投资风口”“短期热点”不同的是,它经过了60多年的发展,已经形成了庞大自洽的知识体系。事实上,上述各层的每一项内容都至少对应一门课程。

目标在现有学科培养框架下能否达成?

以计算机科学与技术学科为例,本科毕业大致需修满150个学分,其中约60学分是通识通修课程,15学分是毕业设计和就业创业类课程,在剩下的约75个学分中,学科平台课和专业核心课约占55学分。到此尚未出现人工智能专门课程,已经仅剩约20学分。而剩下的学分仍需考虑计算机学科“宽口径”人才培养,要平衡多个专业方向的需求,这就使得能专门用于人工智能的课程数量远远不能满足需求,导致人工智能专业课程只能浓缩到“高级科普”程度。

事实上,即便不考虑课程数量,仅从已开设课程的内容来说,也与人工智能人才培养的需求有很大距离。以人工智能所需的五大数学基础(线性代数+矩阵论、数学分析、概率论+数理统计、最优化方法、数理逻辑)为例,目前计算机学科线性代数内容很浅,通常不开设矩阵论,很多学生甚至没接触过矩阵求导,这对机器学习等人工智能核心课程的学习造成很大障碍;数学分析课程的内容通常很浅,甚至可能与其他数学课压缩到一起;概率论与数理统计内容仅是蜻蜓点水;最优化方法一般不开设;数理逻辑一般是选修、甚至不开设。这就造成计算机学科的一般学生在学习人工智能核心课程之前往往需专门花时间自学以加强数学基础。另一方面,人工智能应用中所涉及的智能硬件与材料、传感器设计与应用等内容,已经超出了计算机科学与技术学科的范畴。

综合上述考虑,我们得出的结论是:创办一流大学人工智能教育需要建设新的课程体系。与其在现有学科培养体系框架下修修补补,不如从头根据人工智能学科自身的特点进行建设。

我们相信,正确落实教育部《高等学校人工智能创新行动计划》将大幅度增强我国人工智能领域人才培养力度,为新一代人工智能发展提供战略支撑。


原文发布时间为:2018-05-18

本文作者:周志华

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来教育:探索智能教学的新纪元
【10月更文挑战第16天】 在21世纪这个信息爆炸的时代,技术革新正以惊人的速度改变着我们的生活和工作方式。其中,人工智能(AI)作为引领变革的先锋力量,不仅重塑了工业、医疗、金融等多个行业的面貌,也正悄然渗透进教育领域,预示着一场关于学习与教学方式的革命。本文旨在探讨人工智能如何为未来教育带来前所未有的机遇与挑战,从个性化学习路径的定制到教育资源的优化分配,再到教师角色的转变,我们一同展望一个更加智能、高效且包容的教育新纪元。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在教育领域的应用与挑战
随着科技的不断进步,人工智能(AI)技术已经深入到社会的各个领域,其中教育领域尤为突出。本文旨在探讨人工智能在教育领域的应用现状、面临的挑战以及未来的发展趋势。通过分析AI技术如何改变传统教学模式,提高教育质量和效率,同时指出其在实际应用中可能遇到的问题和挑战,为未来教育的发展提供参考。
198 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
148 9
|
3天前
|
人工智能 自然语言处理 搜索推荐
AI在教育中的潜力与挑战:开启智慧教育的新时代
AI在教育中的潜力与挑战:开启智慧教育的新时代
61 19
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
师资研修|AI赋能教师教学能力转型-德阳某教育主管部门
近日,德阳市教育主管部门,面向全市中职院校的骨干教师,开展AIGC赋能教育教学师资培训。TsingtaoAI参与负责本次师资研修的教学。本次师资研修通过系统化、专业化的培训,帮助教师深入掌握AI大模型及生成技术在教学中的应用。课程以实践为核心,以案例为载体,涵盖AI提示词优化、教案与题库生成、PPT高效设计及AI数字人应用等核心内容,全面提升教师的教学效率与创新能力。
38 5
|
1月前
|
人工智能 自然语言处理 搜索推荐
AI辅助教育:个性化学习的新纪元
【10月更文挑战第31天】随着人工智能(AI)技术的发展,教育领域迎来了一场前所未有的变革。AI辅助教育通过智能推荐、语音助手、评估系统和虚拟助教等应用,实现了个性化学习,提升了教学效率。本文探讨了AI如何重塑教育模式,以及个性化学习在新时代教育中的重要性。
|
1月前
|
机器学习/深度学习 人工智能 算法
AI与未来教育:一场革命性融合
在这个信息爆炸的时代,人工智能(AI)正逐步渗透到我们生活的每一个角落,教育领域也不例外。本文旨在探讨AI技术如何革新传统教育模式,以及这一变革可能带来的深远影响。通过分析AI在个性化学习、智能辅导系统、教育资源优化分配等方面的应用案例,揭示其对未来教育生态的重塑潜力。同时,文章也将讨论伴随技术进步而来的挑战,如数据隐私保护、教师角色转变等问题,并提出相应的解决思路和建议,为构建更加公平、高效、人性化的教育体系提供参考。
|
1月前
|
人工智能 自然语言处理 搜索推荐
人工智能与教育:个性化学习的未来
【10月更文挑战第31天】在科技飞速发展的今天,人工智能(AI)正深刻改变教育领域,尤其是个性化学习的兴起。本文探讨了AI如何通过智能分析、个性化推荐、智能辅导和虚拟现实技术推动个性化学习,分析了其带来的机遇与挑战,并展望了未来的发展前景。
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮中的编程教育革新
【10月更文挑战第21天】在人工智能飞速发展的今天,编程教育正面临着前所未有的变革。本文通过探讨AI技术对编程教育的深远影响,以及如何利用这些技术优化教学过程,旨在启发读者思考教育的未来方向。我们将一起探索从基础语法学习到复杂算法应用的转变,并讨论如何培养适应未来社会的创新人才。
|
2月前
|
人工智能 搜索推荐 安全
人工智能与未来社会:探索AI在教育领域的革命性影响
本文深入探讨了人工智能(AI)技术在教育领域的潜在影响和变革。通过分析AI如何个性化学习路径、提高教学效率以及促进教育资源的公平分配,我们揭示了AI技术对教育模式的重塑力量。文章还讨论了实施AI教育所面临的挑战,包括数据隐私、伦理问题及技术普及障碍,并提出了相应的解决策略。通过具体案例分析,本文旨在启发读者思考AI如何助力构建更加智能、高效和包容的教育生态系统。