不养数据的企业将死在大数据的路上

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

关于大数据,很多企业都关注数据分析、算法建模等这些听起来高大上的词,却往往忽略了数据积累的基本功。企业需要的数据来源可以外部获取,如行业的、社交媒体等数据,可以异业联盟,如卖母婴用品的企业可以向卖孕妇装企业获取客户信息……然而对于企业来说,最重要的一类大数据是在企业业务流程活动发生的时候被采集存储的数据,如客户在所有线上线下接触点交互的信息、生产线上传感器的信息等。哈默流程管理的9大原则中提到“从信息来源地一次性地获取信息”,AMT建议,企业在业务流程设计优化的时候,就要充分考虑面向未来大数据分析需要,哪些数据应如何在业务活动的过程中如何被自动的采集和存储。像养孩子一样去养数据,将来数据才会真正成为企业有价值的资产。

正文:

养孩子大家不陌生,养数据比养孩子可麻烦多了:费心、费力、费钱。养孩子只是自己家里面的事情,而养数据不仅仅是一个公司的行为,有时候还需要去养异业合作的客户的数据,甚至去养生态圈的数据。

孩子不养不成材,数据不养也长不大,后果是数据缺失,垃圾数据满天飞。

我们熟悉数据分析,但是养数据这三个字儿对很多人来说是陌生的。百度了一下:“养数据”只有58.5万条网页(一个月前只有25.6万),而“数据分析”却有5470万条网页,侧面说明了养数据的重视度远远不够的。

离开了数据谈决策是耍流氓,不主动养数据谈什么数据?数据不会自己从天而降,有些数据即便你有钱也买不到。养数据就如养孩子一样,真的是一把屎一把尿的拉扯大的。不多说了,没有孩子的人是没办法体验养数据之苦的。

数据分析这几年被空前的重视,我自己感觉也是这样,这两年找我做数据化管理的培训和咨询的企业尤其多。这些企业一上来就是数据分析技巧,数据分析理论,数据化决策等等。而看他们提供给我数据则是不忍目睹,各种数据缺失,各种不规范,数据源质量一塌糊涂。如顾客名字叫坑爹,会员年龄100多岁,手机号135790248*......

养数据必须被企业的管理层和业务单位重视起来,扯皮不是理由,懒惰不是借口。作为数据单位有义不容辞的责任去控制数据质量和内容。只有数据质量和数量提升了,企业才可以谈什么数据驱动,DT时代。否则,请住嘴。

养数据的典范:雅昌的故事

雅昌是一个深圳的企业,93年成立的时候只是一个搞印刷的小作坊,而现在它被大众熟悉是因为我们的奥运会、世博会等的宣传材料是他们印刷的,而且雅昌艺术品拍卖网是国内最权威的艺术品拍卖门户网站。

它有9万多位艺术家的电子资料,1200万艺术品展览和拍卖的数据,3500多万件艺术品资料。雅昌就是一个艺术品的大数据库,世界上所有的拍卖行都必须要和它合作,因为有些艺术品只有它才有电子版的资料。

一切的一切只有一个关键词:养数据!

雅昌的老板很有养数据的意识,当年还是一个小作坊的时候,他就要求员工必须要把客户的印刷资料作为电子版本保存起来。大家可以想一想,那可是90年代,还是磁盘存储的年代,存储还是以MB为单位而不是现在流行的G。

所有客户的电子数据就这样被保存起来了,直到后来数字存储技术的发展,他们才把所有收集的数据分门别类的归档。于是,别人没有的电子资料雅昌有,老一代艺术家作品只有雅昌有电子版......

随着雅昌自己印刷业务的增长,它收集的数据也越来越多,数据就是这样被养大了。再后来雅昌顺理成章的“跨界”艺术品门户。

养数据是苦逼的工作,有时候甚至短期看不到未来,但是坚信必有收获。大的方面来说养数据包含三方面:

完善数据结构,把数据养大

1、企业数据库中有的字段必须要全部收集起来,尽可能的不要留白。

2、有用但是现在没有的数据必须想办法收集起来,例如传统零售的客流数据,客流动线数据。

3、暂时用不到的数据,本着先收集再应用的原则。对于一个零售门店来说最有用的数据可能不是顾客的购买数据,反而是顾客“不”购买的数据,清楚了顾客为什么不购买对于企业的商品规划,营运流程再造是有巨大好处的。就如飞机修理厂为了解飞机哪个部分最容易被击中,派人统计飞机出故障的部位。发现主要问题在机翼的部分,那里弹孔最多,于是他们决定把机翼部分加强。其实在战场中被击落没有飞回来的飞机数据才是最有意义的。

4、跨界合作得大数据。线上企业要了解线下就必须要和传统零售合作,打通各种数据孤岛。

提高数据质量,把数据做精

有数据但没质量是企业数据的通病,原因不外乎基层数据录入太随意,定义不清楚,网络硬件等影响原因。比如有些服装专卖店的员工平时很忙没时间将订单录入系统(百货店铺品牌方的系统和商场收银是分离的),于是店长就每天下班前才将所有的当日订单合并到一起录入进销存系统。这样的危害是巨大的。

1、进销存系统变成了单纯的财务对账系统,说好的数据分析根本无从下手;

2、没办法分析顾客的客单价和连带率(平均顾客购买数量),因为n张订单被人为的合并了;

3、没办法分析店铺按时段的成交规律,所有订单都只是显示一个时间点。

提高数据质量这种事情只能是企业从营运端入手严防死守,前提是重视!不难!

要有数据入库的意识

数据库数据库就是尽可能的让数据在数据库中,而不是在excel中。企业很多数据其实是在excel中的,比如促销活动的开始时间、结束时间、活动内容等。还比如店铺在商场的位置,楼层,店铺级别等信息也是在excel中而不是在系统中的。

别让一些基础数据躺在excel中,一定要想办法放到数据库中去。一是安全,而是更利于数据的场景化,否则就只是一些干巴巴的数字。

养数据是一个长期艰巨的工作,并且得不到企业管理层重视,也得不到基层员工的积极配合。但是必须要克服困难,上!

两个建议:

1、养数据必须基于5年后的数据需求来规划布局;

2、养数据必须结合业务场景来思考。

一个企业在养数据的层面上谋划越深越前瞻性,才可能在数据驱动营运,驱动决策的路上越走越顺。



本文出处:畅享网
本文来自云栖社区合作伙伴畅享网,了解相关信息可以关注vsharing.com网站。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
7天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
59 7
|
7天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
17 2
|
19天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
64 1
|
14天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
35 3
|
14天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
47 2
|
17天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
52 2
|
18天前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
49 2
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
1月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
49 3
|
21天前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。