计算广告概述【计算广告】

简介: 计算广告是使免费用户互联网产品获得资产变现的一种系统性手段,其中,这些资产主要包括:数据、流量和品牌价值。 对大多数媒体和用户产品来说,品牌价值往往不容易获得,主要的资产还是数据和流量。计算广告的基本任务就是把数据和流量规模化变现。

由于工作关系,先后参与过大数据分析、广告监测监播、DMP+DSP开发、媒体监测等相关产品设计、开发及营销,对当下的计算广告有一定了解,所以计划写个系类文章来分享下我的所见所得。

1. 什么是计算广告?

计算广告学是一门由信息科学、统计学、计算机科学以及微观经济学等学科交叉融合的新兴分支学科。计算广告这个概念首先是由美国工程院院士、前雅虎副总裁AndreiBroder是由提出的,之后,AndreiBroder和另一位Yahoo!科学家在斯坦福开设了此课程,被称为互联网广告从业人员的“必修课”。而在国内,曾经担任Yahoo!高级科学家的刘鹏博士在网易云课堂系统地讲授过这门课程。
简单地说,

2. 计算广告生态链

2.1计算广告生态链构成

在移动广告生态链中计算广告是使免费用户互联网产品获得资产变现的一种系统性手段,其中,这些资产主要包括:数据、流量和品牌价值。
对大多数媒体和用户产品来说,品牌价值往往不容易获得,主要的资产还是数据和流量。计算广告的基本任务就是把数据和流量规模化变现。它涉及到DMP积累、营销引擎、机器学习及数据挖掘等,是数字和计算驱动的行业。,由6部分主体组成:

  • 广告主
  • 广告代理公司
  • 广告平台(优化平台)
  • 应用开发者
  • 应用发布渠道
  • 移动用户。

以AdMob为代表的广告平台,其上游面广告主广告公司,此主体为广告的最终埋单者,而下游则是应用开发者,其开放自身广告位,由广告平台(优化平台)整合销售。依照移动用户的曝光数或广告点击数,开发者和广告平台对销售所得进行分成。比如一位游戏开发者开放了自己的广告位给AdMob,AdMob卖给广告主,最后,收入所得的68%给开发者,32%归AdMob。
计算广告生态链构成复杂,环节众多,如下图是有LUMA发布的计算广告生态链的主体环节以及各个环节的主流公司,具体内容会在后续的文章详细介绍。
image

2.1 付费模式

流量变现始终是广告以及大数据行业不变的主题,在移动广告行业,广告付费模式决定着生态链各方的收入,甚至是广告各个环节的构成。按照行业通用标准一般分为三类:

  1. CPM(Cost Per Mille或者Cost Per Thousand/Impressions,每千人成本)
    广告投放过程中,听到或者看到某广告的每一人平均分担到多少广告成本。此种由传统媒体多为采用的方式也多为品牌广告采用,比如苹果iAD即以此方式计费。
  2. CPC(Cost Per Click/Thousand Click-Through每点击成本)
    CPC通过点击率限制可以加强作弊的难度。大家常见的朋友圈广告就主要采用CPC计费。
  3. CPA(Cost Per Action 每行动成本)
    按广告投放实际效果,即按回应的有效问卷或定单来计费,而不限广告投放量。CPA的计价方式有一定对赌的意思,该方式对于网站而言有一定的风险,但若广告投放成功,其收益也比CPM的计价方式要大得多。

除上述三种计费模式外,广告交易还常用

  • CPT(Cost per Time)
  • CPS(Cost per Sale)
  • CPD(Cost per Download)
  • CPD(Cost per Day)
  • CPI(Cost per Install 每次安装成本、一般用于APP计费方式)
  • CPP (Cost Per Purchase) 每购买成本
  • CPP (Cost per person) 按人头收费,这点是我们在做场景话精准营销时自己设计的计费模式。
  • CPR (Cost Per Response) 每回应成本
  • 包月方式
  • PFP(Pay-For-Performance) 按业绩付费
  • CPL(Cost Per Leads):以搜集潜在客户名单多少来收费;
  • CPS(Cost Per Sales):以实际销售产品数量来换算广告刊登金额
    其实,不同的设计模式都是为了应对不同广告应用场景而设计的,广告计费模式一定程度上反应了广告应用场景的商业模式。一般而言,CPM和包月方式对网站有利,而CPC、CPA、CPR、CPP或PFP则对广告主有利。目前 比较流行的计价方式是CPM和CPC,最为流行的则为CPM,在精准的场景话营销里,CPP对各方更有利。

3. 国内现状

下图是国内广告行业构成概览;
image
个人认为国内计算广告行业主要表现有如下几方面:

1. DMP扎堆出现

DMP在互联网广告中的核心位置为”鸡蛋黄中的钻石“级别,为何这么这么重要?因为只要帮了为广告主搭建DMP这件事,那么其他业务就是顺理成章衍生了,所以DMP桥头堡这关非占不可。比如CRM巨头安客诚,如果为广告主搭建了DMP之后,EDM,直复营销,Callcenter,CRM全部顺利成章囊中之物,整体协调也更有效。易传媒的嵌入式DMP能为互联网广告投放得更精准,admaster的DMP则能够评估各媒体渠道投放的效果。DMP没有统一的功能,大多是为广告主量身定做的,所以DSP+DMP一家供应商这种情况在美国也非常常见,也有大型广告主讲究DMP与投放渠道独立的,广告主各有各的故事,建了DMP一切都好说。

2.移动流量RTB adexchange已由蓝海变火海

技术框架上DSP和RTB没有太大区别,目前中国移动端的展示量据说已经超过美国,装机量跳跃式增长,市面上,91+秒针,芒果,三星adhub,还有阿里妈妈等流量控制者,都在建移动adexchange。

3.Data Exchange的出现

中国adexchange生态里,高质量第三方数据奇缺,多数掌握在BAT+Sina+电信运营商手里,但是可喜的是,Alimama与baidu已经开始动起来了,据说阿里妈妈正在对接Google Bidding Manager,可能是看中了google的品牌广告主。

4.DSP的技术及数据实现越来越容易

2013年算是DSP元年,大量DSP公司涌现。起初,DSP的构建具有很高的门槛,一般而言,一个真正意义的DSP,必须拥有两个核心特征,一是拥有强大的RTB(Real-Time Bidding)的基础设施和能力,二是拥有先进的用户定向(AudienceTargeting)技术。通俗的说,就是必须具备很强的计算机工程能力和强大的硬件、网络基础设施做支撑,同时需要由大量用户数据的积累,实现广告定向投放。
在各大巨头纷纷开发计算能力和数据能力的今天,构建一个功能强大的DSP变得很容易,2017年前,DSP公司若想走到市场前列,关键时依靠过硬的技术支撑和海量的数据积累,如上的两大行业壁垒将不再时DSP公司的核心价值,个人认为DSP行业的核心价值会越来越回归商业本质,即构建更透明的商业模式来服务广告主。
例如,在2017年我主导公司的一个场景话精准营销的产品,在阿里云营销引擎的基础上,配合阿里云提供的相关产品,仅用了一个月时间就构建出一套业内最为先进的DSP营销系统,技术方面阿里提供了一整天解决方案,DMP方面,阿里提供了市场中最为精准的数据支撑(非淘系数据)。
(说个题外话,本人从事计算机由七八年时间,前后从事过单板机,嵌入式软硬件开发,linux内核开发,机器学习和数据挖掘算法研究,大数据开发,行业洞察和广告营销,对计算机行业日新月异的发展颇有感慨:ARM出现,使得芯片设计变得通用;android出现使得嵌入式行业的技术难点变成通用模块;google三大论文后出现的hadoop,spark等大数据计算平台,使TB级数据分析变得很容易;阿里云等云产品不仅很大程度上降低了企业的基础设施等重资产投入、运维成本以及研发成本,更使得企业在运维、基础技术构建等方面变得得心应手。不仅如此,而今,构建一款视频APP,构建一套开箱即用的大数据计算平台或中台系统,构建一个有行业特色的DMP+DSP营销系统等都变得很容易;16年人工智能大火,当时的判断是人工智能在各大巨头及学术界共同发力下,必将在未来几年内成为计算机行业的基础设施,实际上,前几年人工智能火,主要解决计算视觉、音频识别相关课题以及文本识别相关课题这三个方向原始信息的识别,而这些课题一旦功课,就会变成类似API方式的商业应用,所以个人认为,技术的存在即价值是为了解决问题,计算机行业的前景是在了解计算机技术边界的基础上,努力发掘商业的边界,例如本文讲的DSP,在阿里云营销引擎的基础上,几乎人人都可以有自己的DSP,所以关键不再是如何构建DSP,而是在DSP构建变得轻而易举后,商业模式会有什么样的变化,以及会有什么样的新的商业模式)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
基于阿里云快速搭建数字营销引擎【计算广告】
阿里云营销引擎有别于其他阿里云产品,它是配合阿里云MaxComputer,画像分析,分析型数据库等多个云产品,并在高德DMP和友盟+DMP提供人群分析能力的基础上,提供一整套数字营销解决方案。 在过去搭建一套成熟DSP平台需要一个强大的技术和业务团队,现在只需要一个人就能够轻松完成,大幅降低了系统构建的基础设施成本,运维成本,容灾成本,开发成本,时间成本。
3049 0
|
13天前
|
数据可视化
实时榜单排行计算
实时榜单排行计算
129 0
实时榜单排行计算
|
13天前
|
存储 搜索推荐 数据挖掘
淘宝商品详情API:挖掘实时数据金矿,点燃电商增长引擎
随着互联网的快速发展,电子商务在全球范围内得到了广泛应用。作为中国电商市场的领军者,淘宝不仅拥有庞大的用户群体和海量的商品数据,还提供了一系列的API接口,使得第三方开发者可以方便地获取并利用这些数据。其中,淘宝商品详情API是淘宝开放平台中非常重要的一项接口,它能够获取到淘宝网内商品的详细信息,从而帮助开发者更好地服务用户,提升电商业务的运营效率。 本文将详细介绍淘宝商品详情API的应用场景、使用方法和注意事项,并通过示例代码展示如何使用该API获取商品详情数据。同时,本文还将探讨如何利用这些数据实现个性化推荐、提升销售转化率等业务目标。
|
11月前
|
消息中间件 存储 分布式计算
【大数据学习篇11】广告点击流实时统计
【大数据学习篇11】广告点击流实时统计
266 0
【大数据学习篇11】广告点击流实时统计
|
数据采集 分布式计算 关系型数据库
离线计算-国内查询转换率|学习笔记
快速学习离线计算-国内查询转换率
157 0
|
数据采集 大数据 开发者
离线数据计算-国际查询转换率及其他|学习笔记
快速学习离线数据计算-国际查询转换率及其他
137 0
|
数据采集 NoSQL Java
【最佳实践】页面浏览量统计的绝佳实现
【最佳实践】页面浏览量统计的绝佳实现
882 0
【最佳实践】页面浏览量统计的绝佳实现
|
存储 监控 搜索推荐
淘宝搜索模型如何全面实时化?首次应用于双11
双十一当天,淘宝会产生很多的点击率。点击率(Click Through Rate,CTR)和点击转化率(Conversion Rate,CVR)预估在电子商务中的许多工业应用(例如搜索、推荐和在线广告系统)中发挥着重要作用。其中最主要的挑战是,用户、query、商品的特征分布以及ground truth的CTR/CVR可能受季节性、商家活动、大促等因素影响,随时间发生很大的的变化。受限于在线系统对模型的构建和切换的耗时,模型只能每N小时(N>=2)生效一次。因此模型不仅滞后实时数据N小时,而且由于模型是冻结的,也无法应对CTR/CVR的实时变化。下面我们一睹为快吧。
3541 0
淘宝搜索模型如何全面实时化?首次应用于双11
|
分布式计算 并行计算 算法
|
机器学习/深度学习 大数据 测试技术

热门文章

最新文章