硬纪元AI峰会前瞻:成像技术距离下一次颠覆还有多远?

简介:

在现实生活中,越来越多的行业用到了摄像头,像直播、监控等等,而在当下,因为某些物理原因,普通摄像头已经不能够满足行业发展的需求。

不论是成像技术,亦或是三维感知,其实都属于深度感知的范畴。虽然目前市场对于深度感知技术的需求呈井喷状态,但是能够提供成熟产品和方案的公司却屈指可数,造成这一现象的核心原因就是技术门槛过高。

硬纪元AI峰会前瞻:成像技术距离下一次颠覆还有多远?

从三维感知的角度来看,AI人工智能主要分为感知和认知两个层面。

针对感知层而言,有一个里程碑事件是深度传感器的普及。2009年,微软Kinect 诞生是当时的一个大事件,是人工智能感知传感器中的革命性的里程碑,从此以后大家终于可以很方便和低成本地获取3D信息了;另外,计算机视觉长期存在两大难题:图像理解和三维重建。

一直以来,求解3D都是人们的梦想,最初它需要拍两张或多张照片,费很大的劲儿来重建。但今天有了sensor,人们直接可以测量3D,它一下就开启了今天和未来的很多应用。

但是,Kinect V2是基于连续波间相法的ToF(Time-of-Flight)深度相机,它存在不能抗阳光,不能远距离工作的缺陷。而另一种获取三维数据的方式是通过机械扫描式激光雷达,但它同样存在无法解决的缺陷:产能受限成本高、数据稀疏空间分辨率低,限制了它们的应用范围。

深度感知现有的三种解决方案

现阶段常见的深度感知解决方案,主要依靠深度摄像头,在获取平面图像之外,还可以获取图像中的深度信息,比如说三维的位置以及尺寸等信息,这也就让计算机获得了环境和对象的三维立体数据。

硬纪元AI峰会前瞻:成像技术距离下一次颠覆还有多远?

从技术角度来细分的话,深度感知摄像头目前有如下三种解决方案:

结构光:目前应用最广泛的深度感知方案,基本原理是由结构光投射器向被测物体表面投射可控制的光点、光条或光面结构,并由图像传感器获得图像,通过系统几何关系,利用三角原理计算得到物体的三维坐标。上文中提到的Kinect 1代就是使用的这项技术。

双目视觉:只需安装两个摄像头,利用双目立体视觉成像原理,通过两个摄像机来提取包括三维位置在内的信息进行深度感知。因为没有涉及光学系统,所以双目视觉解决方案的成本较低,但是该项技术对于硬件设备的要求又相对较高。

ToF:飞行时间(Time of Flight)技术的缩写,基本原理是传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息,此外再结合传统的相机拍摄,就能将物体的三维轮廓以不同颜色代表不同距离的地形图方式呈现出来。ToF是受环境影响最小的技术,不过由于其分辨率不高,所以并不适用于高精度需求的应用场景。

三维感知技术对于AI的革命性推动及应用

目前全球范围内感知深度的ToF传感器有很多种,其中以光珀智能科技的ToF传感器最具代表性。

杭州光珀智能科技有限公司(以下简称“光珀”)主要专注于全球新一代ToF传感器技术的研发。光珀在基于PCT的专利保护下提出原理创新,使得他们的ToF传感器和传统的ToF深度相机(基于连续波间相法)相比,其远距离及抗阳光的特性更类似传统意义上的激光雷达。同时也解决了机械扫描式激光雷达产能受限成本高、数据稀疏空间分辨率低的两大缺陷。

光珀智能CEO白云峰介绍说:“目前,我们已经推出了‘光珀第一代ToF传感器芯片’,并由此构建了三个固态面阵激光雷达技术平台,分别满足不同距离下(近、中、远)、强阳光下(100Klux)、大场景(70⁰)、高精度(<1%)、高空间分辨率(0.06⁰H)等三维感知需求。这三个技术平台可以服务于智能安防、机器人的导航与避障、无人驾驶的环境感知。特别是在无人驾驶领域,光珀的传感器满足了量产无人车对激光雷达低成本、高空间分辨率的两大需要。

“光珀正和科研院校联手创建大场景下的稠密三维数据集。而我们相信,这样的数据集会对未来人工智能的发展有着革命性的推动作用。”

深度感知领域还能有哪些突破?

现阶段的深度感知技术还处于前期,虽然在硬件性能和算法程序上已经有所突破,但是依然面临诸多限制,这也导致了很多应用场景还处于商业化探索阶段。那么,对于深度感知领域,还能有哪些突破?

硬纪元AI峰会前瞻:成像技术距离下一次颠覆还有多远?

如果你想得到答案,就一定不要错过镁客网7月9日在北京国家会议中心举办的“3E“硬纪元”AI+产业应用创新峰会”,峰会期间将会有众多人工智能、深度感知领域的大咖,分享他们的最新见解与洞察。所以,你还在犹豫什么,赶紧点击链接报名参加吧!


原文发布时间: 2017-07-03 17:42
本文作者: JOKER
本文来自云栖社区合作伙伴镁客网,了解相关信息可以关注镁客网。
相关文章
|
2天前
|
存储 人工智能 Serverless
阿里云《AI 剧本生成与动画创作》技术解决方案测评
本问是对《AI 剧本生成与动画创作》的用心体验。结论不是特别理想,在实际使用中仍存在一些问题。
50 22
|
4天前
|
人工智能 前端开发 Serverless
阿里云《AI 剧本生成与动画创作》解决方案技术评测
随着人工智能技术的发展,越来越多的工具和服务被应用于内容创作领域。阿里云推出的《AI 剧本生成与动画创作》解决方案,利用函数计算 FC 构建 Web 服务,结合百炼模型服务和 ComfyUI 工具,实现了从故事剧本撰写、插图设计、声音合成和字幕添加到视频合成的一站式自动化流程。本文将对该方案进行全面的技术评测,包括实现原理及架构介绍、部署文档指引、具体耗时分析以及实际使用体验。
51 16
|
14天前
|
机器学习/深度学习 人工智能 API
Aligner:自动修正AI的生成结果,北大推出残差修正模型对齐技术
介绍北大团队提出的 Aligner 模型对齐技术,通过学习对齐答案与未对齐答案之间的修正残差,提升大语言模型的性能。
75 28
|
28天前
|
人工智能 达摩院 计算机视觉
SHMT:体验 AI 虚拟化妆!阿里巴巴达摩院推出自监督化妆转移技术
SHMT 是阿里达摩院与武汉理工等机构联合研发的自监督化妆转移技术,支持高效妆容迁移与动态对齐,适用于图像处理、虚拟试妆等多个领域。
68 9
SHMT:体验 AI 虚拟化妆!阿里巴巴达摩院推出自监督化妆转移技术
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
DeepSeek逆天,核心是 知识蒸馏(Knowledge Distillation, KD),一项 AI 领域的关键技术
尼恩架构团队推出《LLM大模型学习圣经》系列,涵盖从Python开发环境搭建到精通Transformer、LangChain、RAG架构等核心技术,帮助读者掌握大模型应用开发。该系列由资深架构师尼恩指导,曾助力多位学员获得一线互联网企业的高薪offer,如网易的年薪80W大模型架构师职位。配套视频将于2025年5月前发布,助你成为多栖超级架构师。此外,尼恩还提供了NIO、Docker、K8S等多个技术领域的学习圣经PDF,欢迎领取完整版资源。
|
6天前
|
人工智能 负载均衡 搜索推荐
谷歌发布双思维AI Agent:像人类一样思考,重大技术突破!
谷歌近日推出基于“快慢思维”理论的双思维AI Agent系统,模仿人类大脑的两种思维模式:快速直观的Talker(系统1)和深思熟虑的Reasoner(系统2)。Talker负责日常对话与快速响应,Reasoner则处理复杂推理任务。该系统模块化设计,灵活高效,已在睡眠教练等场景中展现应用潜力,但仍面临工作负载平衡与推理准确性等挑战。论文详情见:https://arxiv.org/abs/2410.08328v1
31 1
|
25天前
|
存储 人工智能 安全
AI时代的网络安全:传统技术的落寞与新机遇
在AI时代,网络安全正经历深刻变革。传统技术如多因素身份认证、防火墙和基于密码的系统逐渐失效,难以应对新型攻击。然而,AI带来了新机遇:智能化威胁检测、优化安全流程、生物特征加密及漏洞管理等。AI赋能的安全解决方案大幅提升防护能力,但也面临数据隐私和技能短缺等挑战。企业需制定清晰AI政策,强化人机协作,推动行业持续发展。
57 16
|
1月前
|
人工智能 缓存 Ubuntu
AI+树莓派=阿里P8技术专家。模拟面试、学技术真的太香了 | 手把手教学
本课程由阿里P8技术专家分享,介绍如何使用树莓派和阿里云服务构建AI面试助手。通过模拟面试场景,讲解了Java中`==`与`equals`的区别,并演示了从硬件搭建、语音识别、AI Agent配置到代码实现的完整流程。项目利用树莓派作为核心,结合阿里云的实时语音识别、AI Agent和文字转语音服务,实现了一个能够回答面试问题的智能玩偶。课程展示了AI应用的简易构建过程,适合初学者学习和实践。
97 22
|
1月前
|
人工智能 Java 程序员
通义灵码AI编码助手和AI程序员背后的技术
通义灵码AI编码助手和AI程序员背后的技术,由通义实验室科学家黎槟华分享。内容涵盖三部分:1. 编码助手技术,包括构建优秀AI编码助手及代码生成补全;2. 相关的AI程序员技术,探讨AI程序员的优势、发展情况、评估方法及核心难点;3. 代码智能方向的展望,分析AI在软件开发中的角色转变,从辅助编程到成为开发主力,未来将由AI执行细节任务,开发者负责决策和审核,大幅提升开发效率。
146 12
|
1月前
|
人工智能 搜索推荐
AI视频技术的发展是否会影响原创内容的价值
AI视频技术的发展显著降低了视频制作的门槛与成本,自动完成剪辑、特效添加等繁琐工作,大大缩短创作时间。它提供个性化创意建议,帮助创作者突破传统思维,拓展创意边界。此外,AI技术使更多非专业人士也能参与视频创作,注入新活力与多样性,丰富了原创内容。总体而言,AI视频技术不仅提升了创作效率,还促进了视频内容的创新与多样化。

热门文章

最新文章