团队拙作《Python机器学习实战》

简介: 之前看国内外的 Python 机器学习的书,鲜有将机器学习到底怎么做人脸识别、怎么做风险控制、怎么做 OCR 算法模型列出的,并且真正的一个 Python 应用,不止是从机器学习库中导入一下配置一下参数那么简单。

IMG_6356

之前看国内外的 Python 机器学习的书,鲜有将机器学习到底怎么做人脸识别、怎么做风险控制、怎么做 OCR 算法模型列出的,并且真正的一个 Python 应用,不止是从机器学习库中导入一下配置一下参数那么简单。我们所有的例子程序,独此一家,别无分号。

本书的主要内容分为四大部分:

(1)Python开发程序的一些方法技巧,如虚拟环境管理、敏捷开发入门、单元测试等;
(2)Python中的一些中级使用技巧,如列表生成式、多线程与多进程、Python程序性能分析等;
(3)机器学习的基本概念和常用算法介绍,以及如何选择合适的算法;
(4)一些使用Python进行建模和机器学习的实际例子。

我们这样设计是在平时工作学习中发现,作为程序员和数据建模或者机器学习的同事在知识结构和实际应用程序上有一些差异。很多程序员无法理解模型的训练、调参等概念,因为这些和传统的不管是瀑布式还是敏捷式的开发都大相径庭;而建模人员对于一个应用项目的需求、详细设计、开发、测试、部署、性能等也很难理解。于是我们在实践中逐渐摸索并采用的方法就是大家都各自往前走一步,程序人员要了解建模的基本流程,而作为建模人员要了解开发的各个步骤的来龙去脉。

本书既能为Python程序开发人员夯实基础,提升编程技能,又能为使用Python的机器学习从业者提供大量实际案例,使其获得机器学习实战经验,帮助开发人员和建模人员取长补短,弥补各自知识结构上的欠缺,打造更优秀的具有综合能力的团队。

因为篇幅有限,只能蜻蜓点水,各方面略有涉及。

目录如下:

第一部分Python开发实战
第一章开发环境选择与比较
第二章Anaconda使用介绍
第三章开发规范与方法
第四章单元测试与代码覆盖率

第二部分Python编程技巧
第五章列表生成式
第六章Collections库
第七章迭代器
第八章Python多线程与多进程浅析
第九章Python程序性能分析初步

第三部分Python机器学习基础
第十章机器学习基础
第十一章主要算法概览
第十二章K近邻算法
第十三章主成分分析
第十四章逻辑回归
第十五章朴素贝叶斯分类器
第十六章决策树算法
第十七章支持向量机
第十八章K-Means聚类
第十九章人工神经网络
第二十章如何选择合适的算法
第二十一章Python机器学习工具

第四部分Python机器学习实例
第二十二章基于RFM的P2P用户聚类模型
第二十三章文本的主题分类
第二十四章利用机器翻译实现自然语言查询
第二十五章身份证汉字和数字识别
第二十六章人脸识别

稍后,我们将赠送一些书籍给需要的朋友们!

目录
相关文章
|
3月前
|
机器学习/深度学习 存储 运维
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
249 46
|
6月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
242 7
|
4月前
|
机器学习/深度学习 人工智能 算法
Scikit-learn:Python机器学习的瑞士军刀
想要快速入门机器学习但被复杂算法吓退?本文详解Scikit-learn如何让您无需深厚数学背景也能构建强大AI模型。从数据预处理到模型评估,从垃圾邮件过滤到信用风险评估,通过实用案例和直观图表,带您掌握这把Python机器学习的'瑞士军刀'。无论您是AI新手还是经验丰富的数据科学家,都能从中获取将理论转化为实际应用的关键技巧。了解Scikit-learn与大语言模型的最新集成方式,抢先掌握机器学习的未来发展方向!
739 12
Scikit-learn:Python机器学习的瑞士军刀
|
7月前
|
机器学习/深度学习 数据可视化 算法
Python与机器学习:使用Scikit-learn进行数据建模
本文介绍如何使用Python和Scikit-learn进行机器学习数据建模。首先,通过鸢尾花数据集演示数据准备、可视化和预处理步骤。接着,构建并评估K近邻(KNN)模型,展示超参数调优方法。最后,比较KNN、随机森林和支持向量机(SVM)等模型的性能,帮助读者掌握基础的机器学习建模技巧,并展望未来结合深度学习框架的发展方向。
Python与机器学习:使用Scikit-learn进行数据建模
|
6月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
6月前
|
机器学习/深度学习 人工智能 Java
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
361 3
|
6月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
7月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
R1类模型推理能力评测手把手实战
195 2
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
449 14
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

推荐镜像

更多