PostgreSQL 11 preview - 索引优化。filter智能消除、分区索引智能合并

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介:

标签

PostgreSQL , 分区 , 约束 , partial index , 消除冗余Filter , 合并partial index scan


背景

当数据量较大时,对数据分区是一种比较不错的数据管理手段。

每个分区都有对应的边界定义,在PostgreSQL中我们可以把它理解为分区的constraint。

目前PostgreSQL在优化器的细节方面进行打磨,constraint可以被优化器利用来做一些优化的工作。

1、例如:

每个班级一个分区,你要找在某个班级并且学号=1的同学。

假设你在学号上创建了一个索引。

那么真实的执行计划会怎么样呢?在没有优化的情况下,可能是这样的

    ->  Index Scan using pi1 on 班级101分区表  (cost=0.29..8.31 rows=1 width=8)  
          Index Cond: (学号 = 1)  
          Filter: (班级=101)  

由于索引上没有班级这个字段的内容,所以被放到了filter里面,意味着每一条符合学号=1的记录都需要再次被filter一遍。而实际上这是板上钉钉的,因为你已经在这个分区里面了。不需要再filter。

显然,优化器可以对这样的场景进行优化,去除Filter。

再看下面这个例子,分区上面都有K字段的范围约束,选择分区表时优化器根据输入条件,将数据收敛到了对应的分区,但是在索引扫描时,FILTRER没有被去除。

create table base (k integer primary key, v integer);  
create table part1 (check (k between 1 and 10000)) inherits (base);  
create table part2 (check (k between 10001 and 20000)) inherits (base);  
create index pi1 on part1(v);  
create index pi2 on part2(v);  
insert int part1 values (generate series(1,10000), random());  
insert into part2 values (generate_series(10001,20000), random());  
explain select * from base where k between 1 and 20000 and v = 100;  
                               QUERY PLAN  
-----------------------------------------------------------------------  
  Append  (cost=0.00..15.65 rows=3 width=8)  
    ->  Seq Scan on base  (cost=0.00..0.00 rows=1 width=8)  
          Filter: ((k >= 1) AND (k <= 20000) AND (v = 100))  
    ->  Index Scan using pi1 on part1  (cost=0.29..8.31 rows=1 width=8)  
          Index Cond: (v = 100)  
          Filter: ((k >= 1) AND (k <= 20000))  
    ->  Index Scan using pi2 on part2  (cost=0.29..7.34 rows=1 width=8)  
          Index Cond: (v = 100)  
          Filter: ((k >= 1) AND (k <= 20000))  

2、对于partial index也是一样的道理,当可以选择多个partial index时,PostgreSQL目前的版本,不能智能的进行最优索引的选择。

create table t (k integer primary key, v integer);  
insert into t values (generate_series(1,20000),random());  
create index i1 on t(v) where k between 1 and 10000;  
create index i2 on t(v) where k between 10001 and 20000;  
postgres=# explain select * from t where k between 1 and 10000 and v = 100;  
                          QUERY PLAN  
------------------------------------------------------------  
  Index Scan using i1 on t  (cost=0.29..7.28 rows=1 width=8)  
    Index Cond: (v = 100)  
(2 rows)  
  
  
Here we get perfect plan. Let's try to extend search interval:  
  
  
postgres=# explain select * from t where k between 1 and 20000 and v = 100;  
                             QUERY PLAN  
------------------------------------------------------------------  
  Index Scan using t_pkey on t  (cost=0.29..760.43 rows=1 width=8)  
    Index Cond: ((k >= 1) AND (k <= 20000))  
    Filter: (v = 100)  
(3 rows)  

实际上可以使用多个partial index,从而实现最优的成本。

Unfortunately in this case Postgres is not able to apply partial indexes.  
And this is what I expected to get:  
  
postgres=# explain select * from t where k between 1 and 10000 and v =   
100 union all select * from t where k between 10001 and 20000 and v = 100;  
                               QUERY PLAN  
----------------------------------------------------------------------  
  Append  (cost=0.29..14.58 rows=2 width=8)  
    ->  Index Scan using i1 on t  (cost=0.29..7.28 rows=1 width=8)  
          Index Cond: (v = 100)  
    ->  Index Scan using i2 on t t_1  (cost=0.29..7.28 rows=1 width=8)  
          Index Cond: (v = 100)  

PostgreSQL 11 在优化器方面,可能针对这个场景会进行优化。patch如下。

https://commitfest.postgresql.org/17/1264/

https://www.postgresql.org/message-id/flat/27516421-5afa-203c-e22a-8407e9187327@postgrespro.ru#27516421-5afa-203c-e22a-8407e9187327@postgrespro.ru

Hi hackers,  
  
I am trying to compare different ways of optimizing work with huge   
append-only tables in PostgreSQL where primary key is something like   
timestamp and queries are usually accessing most recent data using some   
secondary keys. Size of secondary index is one of the most critical   
factors limiting  insert/search performance. As far as data is inserted   
in timestamp ascending order, access to primary key is well localized   
and accessed tables are present in memory. But if we create secondary   
key for the whole table, then access to it will require random reads   
from the disk and significantly decrease performance.  
  
There are two well known solutions of the problem:  
1. Table partitioning  
2. Partial indexes  
  
This approaches I want to compare. First of all I want to check if   
optimizer is able to generate efficient query execution plan covering   
different time intervals.  
Unfortunately in both cases generated plan is not optimal.  
  
1. Table partitioning:  
  
create table base (k integer primary key, v integer);  
create table part1 (check (k between 1 and 10000)) inherits (base);  
create table part2 (check (k between 10001 and 20000)) inherits (base);  
create index pi1 on part1(v);  
create index pi2 on part2(v);  
insert int part1 values (generate series(1,10000), random());  
insert into part2 values (generate_series(10001,20000), random());  
explain select * from base where k between 1 and 20000 and v = 100;  
                               QUERY PLAN  
-----------------------------------------------------------------------  
  Append  (cost=0.00..15.65 rows=3 width=8)  
    ->  Seq Scan on base  (cost=0.00..0.00 rows=1 width=8)  
          Filter: ((k >= 1) AND (k <= 20000) AND (v = 100))  
    ->  Index Scan using pi1 on part1  (cost=0.29..8.31 rows=1 width=8)  
          Index Cond: (v = 100)  
          Filter: ((k >= 1) AND (k <= 20000))  
    ->  Index Scan using pi2 on part2  (cost=0.29..7.34 rows=1 width=8)  
          Index Cond: (v = 100)  
          Filter: ((k >= 1) AND (k <= 20000))  
  
Questions:  
- Is there some way to avoid sequential scan of parent table? Yes, it is   
empty and so sequential scan will not take much time, but ... it still   
requires some additional actions and so increasing query execution time.  
- Why index scan of partition indexes includes filter condition if it is   
guaranteed by check constraint that all records of this partition match   
search predicate?  
  
  
2. Partial indexes:  
  
create table t (k integer primary key, v integer);  
insert into t values (generate_series(1,20000),random());  
create index i1 on t(v) where k between 1 and 10000;  
create index i2 on t(v) where k between 10001 and 20000;  
postgres=# explain select * from t where k between 1 and 10000 and v = 100;  
                          QUERY PLAN  
------------------------------------------------------------  
  Index Scan using i1 on t  (cost=0.29..7.28 rows=1 width=8)  
    Index Cond: (v = 100)  
(2 rows)  
  
  
Here we get perfect plan. Let's try to extend search interval:  
  
  
postgres=# explain select * from t where k between 1 and 20000 and v = 100;  
                             QUERY PLAN  
------------------------------------------------------------------  
  Index Scan using t_pkey on t  (cost=0.29..760.43 rows=1 width=8)  
    Index Cond: ((k >= 1) AND (k <= 20000))  
    Filter: (v = 100)  
(3 rows)  
  
Unfortunately in this case Postgres is not able to apply partial indexes.  
And this is what I expected to get:  
  
postgres=# explain select * from t where k between 1 and 10000 and v =   
100 union all select * from t where k between 10001 and 20000 and v = 100;  
                               QUERY PLAN  
----------------------------------------------------------------------  
  Append  (cost=0.29..14.58 rows=2 width=8)  
    ->  Index Scan using i1 on t  (cost=0.29..7.28 rows=1 width=8)  
          Index Cond: (v = 100)  
    ->  Index Scan using i2 on t t_1  (cost=0.29..7.28 rows=1 width=8)  
          Index Cond: (v = 100)  
  
  
I wonder if there are some principle problems in supporting this two   
things in optimizer:  
1. Remove search condition for primary key if it is fully satisfied by   
derived table check constraint.  
2. Append index scans of several partial indexes if specified interval   
is covered by their conditions.  
  
I wonder if someone is familiar with this part of optimizer ad can   
easily fix it.  
Otherwise I am going to spend some time on solving this problems (if   
community think that such optimizations will be useful).  
  
--   
  
Konstantin Knizhnik  
Postgres Professional: http://www.postgrespro.com  
The Russian Postgres Company  

小结

PostgreSQL 11在优化器细节方面进行了很多优化,包括前面提到的分区表的智能并行JOIN,group, 聚合等。

以及本文提到的,在索引扫描时,

1、根据分区表的约束条件,如果索引字段未包含分区键,会自动消除filter。

2、在输入条件可以用到多个partial index时,自动选择union all扫描。(这项优化,将来也能用在分区索引上面,partial index是分区索引的一个雏形。)

参考

https://commitfest.postgresql.org/17/1264/

https://www.postgresql.org/message-id/flat/27516421-5afa-203c-e22a-8407e9187327@postgrespro.ru#27516421-5afa-203c-e22a-8407e9187327@postgrespro.ru

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
15天前
|
关系型数据库 分布式数据库 数据库
【PolarDB开源】PolarDB资源隔离技术:在多租户环境中的应用与优化
【5月更文挑战第29天】PolarDB,阿里云的云原生数据库,在多租户环境中通过逻辑(Schema/Partition隔离)和物理(分布式存储计算节点)隔离保障数据安全和资源独占。它支持动态资源分配,适应不同租户需求,处理大规模并发,提供租户管理及数据访问控制功能。通过优化资源分配算法、提升事务处理能力和强化监控告警,PolarDB确保性能和稳定性,满足多租户的高效数据库服务需求。
53 1
|
6天前
|
关系型数据库 MySQL 分布式数据库
PolarDB产品使用合集之是否支持分表和分区的功能
PolarDB是阿里云推出的一种云原生数据库服务,专为云设计,提供兼容MySQL、PostgreSQL的高性能、低成本、弹性可扩展的数据库解决方案,可以有效地管理和优化PolarDB实例,确保数据库服务的稳定、高效运行。以下是使用PolarDB产品的一些建议和最佳实践合集。
|
7天前
|
SQL 存储 关系型数据库
PolarDB产品使用合集之有的sql里面有自定义存储函数 如果想走列存有什么优化建议吗
PolarDB是阿里云推出的一种云原生数据库服务,专为云设计,提供兼容MySQL、PostgreSQL的高性能、低成本、弹性可扩展的数据库解决方案,可以有效地管理和优化PolarDB实例,确保数据库服务的稳定、高效运行。以下是使用PolarDB产品的一些建议和最佳实践合集。
|
11天前
|
关系型数据库 PostgreSQL
postgresql如何将没有关联关系的两张表的字段合并
【6月更文挑战第2天】postgresql如何将没有关联关系的两张表的字段合并
19 3
|
11天前
|
关系型数据库 PostgreSQL
postgresql如何将没有关联关系的两张表合并成一张
【6月更文挑战第2天】postgresql如何将没有关联关系的两张表合并成一张
14 0
|
16天前
|
存储 监控 关系型数据库
关系型数据库数据库设计优化
【5月更文挑战第18天】关系型数据库数据库设计优化
31 1
|
16天前
|
SQL 缓存 监控
关系型数据库优化查询语句
【5月更文挑战第18天】
26 2
|
16天前
|
关系型数据库 MySQL 数据库
关系型数据库索引设计优化
【5月更文挑战第18天】
24 1
|
17天前
|
SQL 关系型数据库 分布式数据库
【PolarDB开源】PolarDB Proxy配置与优化:提升数据库访问效率
【5月更文挑战第27天】PolarDB Proxy是阿里云PolarDB的高性能数据库代理,负责SQL请求转发和负载均衡。其关键配置包括:连接池管理(如最大连接数、空闲超时时间),负载均衡策略(轮询、权重轮询、一致性哈希),以及SQL过滤规则。优化方面,关注监控与调优、缓存策略、网络优化。通过这些措施,可提升数据库访问效率和系统稳定性。
123 1
|
18天前
|
负载均衡 关系型数据库 分布式数据库
【PolarDB开源】PolarDB读写分离实践:优化读取性能与负载均衡策略
【5月更文挑战第26天】PolarDB是云原生关系型数据库,通过读写分离优化性能和扩展性。它设置主节点处理写操作,从节点处理读操作,异步复制保证数据一致性。优化读取性能的策略包括增加从节点数量、使用只读实例和智能分配读请求。负载均衡策略涉及基于权重、连接数和地理位置的分配。实践示例中,电商网站通过主从架构、只读实例和负载均衡策略提升商品查询效率。PolarDB的读写分离与负载均衡为企业应对大数据和高并发提供了有效解决方案。
133 0

相关产品

  • 云原生数据库 PolarDB