寻找总和为n的连续子数列之算法分析

简介:

看到有这么道算法题在博客园讨论,算法eaglet邀月都已经设计出来了,花了点时间读了下,学到点东西顺便记录下来吧。

题目是从1...n的数列中,找出总和为n的连续子数列。

这里先设好算法中需要用到的关键变量:

  • s:目标子数列的第一个元素
  • k:目标子数列的长度

那么目标子数列可以表示为(s, k)

1. naive算法(n^2)

最笨的,但是最容易的想到的方法,就是穷举所有的子数列:

for s = 1 to n
for k = 1 to n-s+1
if sum(s, k) == n
output(s, k)

复杂度为:n + (n-1) + (n-2) + (n-3).... = n(n-1)/2

所以,其复杂度是O(n^2)

2. 用二分法改进的naive算法 (nlog2n)

我们需要充分利用输入的特性,这里,原始数列的一个很明显的特点就是有序,而利用有序数列提高效率的最常用方法就是二分法。这里我们可以注意到,针对某个子数列起始点s,我们没有必要逐个长度的去求和判断,而是利用其有序的性质,先求(s, (n+s)/2)的和。如果等于n则输出,如果大于n,则数列结尾在前半段,否则在后半段:

复制代码
复制代码
for s = 1 to n
low = s
high = n
while low < high
mid = (low + high)/2
sum = sum(s, mid)
if sum == n 
output(s, mid)
else if(sum > n) 
high = mid
else 
low = mid
复制代码
复制代码

很明显,此算法复杂度为O(nlog2n)

3. 利用规律s*k <= n而设计的算法 (nlnn)

我们知道,s是目标子数列的第一个元素,也是最小的元素,所以必然有sum(s,k) >= s*k, 也就是n>=s*k, 也就是k <= n/s,于是算法可以写成:

for s = 1 to n
for k = 1 to n/s
if sum(s, k) == n
output(s, k);

此处,其复杂度并不是显而易见,但稍加分析:

复杂度 = n + n/2 + n/3 + n/4 + ... + n/n = n (1 + 1/2 + 1/3 + 1/4 + .. + 1/n),可以注意到,括号中的部分是一个调和级数,其和为lnn。

于是,此算法的复杂度为 O(nlnn),比算法2稍佳,因为lnn的底数要稍大些。

4. 利用规律s*k = n-k(k-1)/2而设计的算法(sqrt(n))

我们知道,对于子数列求和,其公式为:

n = k(s+ (s+k-1))/2 = s*k + k(k-1)/2

得出:

s*k = n - k(k-1)/2

由这个公式我们可以得到两点信息:

  • 1*k <= s*k = n-k(k-1)/2,推出n-k(k-1)/2 >= k
  • 如果n-k(k-1)/2能够整除k,则k是目标子数列的长度,而起始点可以由公式算出:s = (n-k(k-1)/2)/k

于是,算法就可以以k为变量递增,以n-k(k-1)/2 >= k为限制条件:

复制代码
复制代码
k = 1
v = n-k(k-1)/2
while v >= k
if v % k == 0
output(v/k, k) // 如果能整除,则找到解,并且起始点为v/k
k++
v = n-k(k-1)/2
复制代码
复制代码

分析复杂度,我们只需关注k的变化,k是从1递增到某个数结束,关键是如何求这个截止的k。

我们的循环结束条件是:

n-k(k-1)/2 >= k

化简得到:

k^2 + k <= 2n

k^2 <=  2n - k

因为k > 0,于是有

k^2 < 2n

k < sqrt(2n)

所以,这个截止的k就应该是sqrt(2n)或者略小于它

到这里,就不难看出其算法复杂度为O(sqrt(n)) - 略去常数因子和低阶函数

相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
57 4
|
3月前
|
人工智能 算法 BI
第一周算法设计与分析 D : 两面包夹芝士
这篇文章介绍了解决算法问题"两面包夹芝士"的方法,通过找出两个数组中的最大最小值,计算这两个值之间的整数个数,包括特判不存在整数的情况。
|
19天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
26天前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
2月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
53 4
|
1月前
|
算法
PID算法原理分析及优化
【10月更文挑战第6天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
2月前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
40 1
|
2月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
115 19
|
3月前
|
算法
算法设计与分析作业
这篇文章是关于算法设计与分析的作业,其中包含了两个算法实现:一个是使用分治算法实现的十进制大整数相乘(包括加法、减法和乘法函数),并进行了正确性和健壮性测试;另一个是使用快速排序思想实现的分治查找第K小元素的程序,并分析了其平均和最坏时间复杂度。
算法设计与分析作业
|
2月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
48 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计