大数据分析中Redis怎么做到220万ops

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 大数据时代,海量数据分析就像吃饭一样,成为了我们每天的工作。为了更好的为公司提供运营决策,各种抖机灵甚至异想天开的想法都会紧跟着接踵而来!业务多变,决定了必须每天修改系统,重新跑数据,这就要求极高的海量数据读取和存储速度! 公司每天增加几亿行的业务日志数据,我们需要从中分析出各种维度的业务画像。

大数据时代,海量数据分析就像吃饭一样,成为了我们每天的工作。为了更好的为公司提供运营决策,各种抖机灵甚至异想天开的想法都会紧跟着接踵而来!业务多变,决定了必须每天修改系统,重新跑数据,这就要求极高的海量数据读取和存储速度!

公司每天增加几亿行的业务日志数据,我们需要从中分析出各种维度的业务画像。经过很长时间的摸索,选择了Redis作为读写数据的缓存。

 

1,开发平台,C#Net,写Windows服务抓取原始日志数据,合并精简压缩后,写入Redis集群。

2,各业务系统从时间维度上遍历Redis缓存数据,逐行分析处理,中间结果和最终结果写入Redis。

3,另一套Windows服务抓取Redis里的结果数据,保存回数据库。这里有点像MQ的工作方式。

实际上,第一步只有一套系统,这是数据基础。第二第三一般每个子系统都有一对。甚至A系统的结果直接访问B系统放在Redis中的结果数据。

整体上看起来耦合度有点高,但是这一套架构得到了极高的速度,单个子系统实例每秒钟可处理1万到10万个订单!并且是很多套子系统同时工作,单一子系统因业务原因不会吃完全部Redis性能。单独对某一台Redis服务器做压力测试,最高得到了222万ops的速度,测试的是比较简单的业务,统计满足某种业务规则的订单总数。

 

为何需要这么高速度??

业务规则一旦改变,修改程序后,往往需要重新跑最近一周什么一个月的历史数据。如果每天改几次呢?如果赶上双十一旺季,太慢的速度恐怕连实时数据都赶不上。

 

Redis怎么做到220万ops

1,Redis是单线程模型,因此32核心服务器安装32个实例

2,数据分片,key散列后均分到几十个实例上

3,关闭持久化,运维和Linux保证可靠性

4,控制好数据包大小,高性能网络通信最忌收发大量小包,控制在1400字节附近最佳,最差也要pipeline

5,其它在网上能轻易找到的细小技巧

 

为什么不用数据库??

经过大量验证,同样32核心服务器,数据库3巨头一般得到20000qps的查询速度和接近10000tps的写入速度。这是按照单表几百万数据有两个索引的情况测试。如果数据达到几千万上亿,再多两个索引,读写同时进行,那么速度只剩下四分之一不到。真真一个惨字!

大数据分析,有很多是临时数据,需要合并、叠加、去重等等,它们的生命周期不长,一般24小时或48小时,也有不少是两三个小时,关键是数据量还特别大,每天几千万很常见。这类数据,写数据库是很不合适的。

而使用Redis,一台32U512G机器,可以装下一个月几十亿经过压缩处理的历史数据,资源占用在50%上下。

 

我是大石头,打1999年起,18年老码农。目前在物流行业从事数据分析架构工作。欢迎大家一起C#大数据

我不相信神话,我只相信汗水!我不相信命运,我只相信双手!
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
125 2
|
2月前
|
存储 NoSQL Redis
Redis 新版本引入多线程的利弊分析
【10月更文挑战第16天】Redis 新版本引入多线程是一个具有挑战性和机遇的改变。虽然多线程带来了一些潜在的问题和挑战,但也为 Redis 提供了进一步提升性能和扩展能力的可能性。在实际应用中,我们需要根据具体的需求和场景,综合评估多线程的利弊,谨慎地选择和使用 Redis 的新版本。同时,Redis 开发者也需要不断努力,优化和完善多线程机制,以提供更加稳定、高效和可靠的 Redis 服务。
69 1
|
2月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
84 5
|
7天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
77 15
|
14天前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
12天前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
|
1月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
74 4
|
1月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
36 4
|
1月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
215 5
|
1月前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
167 14