阿里云EMR产品介绍及常见问题解答-阿里云开发者社区

开发者社区> 大数据> 正文
登录阅读全文

阿里云EMR产品介绍及常见问题解答

简介: 原作者:阿里云解决方案架构师,韩虎。本文主要介绍阿里云EMR产品相对于传统大数据产品的优势,以及平时运维过程中遇到的问题解法。

一、大数据概述

0ebfcaf38d5754e624f65c219dcf5b3680420085

二、视频大客户对于数据中心的需求

0b1c9ba962480512a299a4b5a87e888e037ab459

ce5a577ee72c39067a47ad8fbd40393adfa93a16

三、传统大数据技术演进

64fb8f5959e676ee8320b44f871a5ccbc165d253

四、EMR介绍

43b46417fab6d4157a9f186ed956a38aefee869c

五、为什么选择EMR

弹性动态伸缩

    基于ECS之上,快捷的扩容、缩容EMR Hadoop集群。

灵活软件栈选择

灵活、快速部署开源大数据服务(HBase、Kafka、Impala、Flink等)。

数据存储成本低

D1机型使用本地盘,价格远低于云盘;OSS低成本存储冷数据。

运维机制

钉钉群支持,快速解决集群使用问题。减少运维工作,更专注于业务。

六、典型问题及解决方案

数据迁移问题

Hive,HBase数据库结构同步,HDFS数据PB级历史数据同步。如何保证线上实时任务不受影响?

元数据库同步:Hadoop distcp filter (Hadoop 2.8之后支持)。Flume配置双写,多个sink。

数据倾斜问题

现象:MapReduce任务卡在最后一个或几个Reduce。

原因:数据分布不均匀,导致大量的数据分配到了一个节点。

问题:

执行Hive任务时,Flume刚好rename文件,会提示文件不存在的错误。

解决办法:hdfs.inUsePrefix=.生成的文件名增加前缀。

问题:

多台服务器同时写入,默认的文件名重复。

解决办法:修改HDFS sink源码,生成的文件默认增加当前服务器的hostname。

问题:

实时性与小文件过多。

解决办法:离线insert overwrite table,重新生成文件。通过MapReduce 在map之后生成新文件的特性,合并小文件。



版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
大数据
使用钉钉扫一扫加入圈子
+ 订阅

大数据计算实践乐园,近距离学习前沿技术

其他文章