3星|《数据思维:从数据分析到商业价值》:有趣的数据分析案例

简介:

数据思维(从数据分析到商业价值)

全书是公众号“狗熊会”的文章的精选,文章都还比较下功夫,但是集结起来看不够全面系统,有的还略显重复。

书中有一些图表的使用技巧,简单介绍了回归分析和机器学习,还有一部分是中文文本分析的案例。

所有的案例都没提到具体的实现细节,有些是用excel或R画图可以实现的,有些则需要编程处理。

案例比较有意思。

书的装帧不错,图是彩色的看起来比较舒服。数据图表的排版与样式花了些功夫,虽然比不上经济学人的图表,还算可以。

总体评价3星,有一定参考价值。

以下是书中一些内容的摘抄:

1:因为你确立了一个可以量化的参照系,而这个参照系就是客户现有的系统。如果没有这个参照系,又想说明75%的精度是有价值的,是不是无比艰难?P19

2:这就是回归分析要完成的三个使命:识别重要变量;判断相关性的方向;估计权重(回归系数)。P25

3:当一个离散型变量只有两个取值的时候,无论在报告里还是在PPT里,都不建议画饼图,因为很容易画成图2-22的丑样。P54

4:对数变换可谓是画图界的整客神器,专门解决各种不对称分布、非正态分布和异方差现象等问题。P72

5:本案例将最经典的技术分析方法之一——均线策略,运用于中国股票市场。通过本案例可以发现,以时间序列模型为基础的均线策略在中国市场有不错的表现,这证明时间序列分析的有用性。P107

6:这里给大家分享一个竞价分配方案:50%预算购买行业词,30%预算购买主打产品词,20%预算购买长尾词。P204

7:用各角色与梅长苏出现在同一自然段的次数作为亲密度的衡量指标。P210














本文转自左其盛博客园博客,原文链接:    http://www.cnblogs.com/zuoqs/p/7892156.html,如需转载请自行联系原作者







相关文章
|
4月前
|
数据采集 数据可视化 数据挖掘
用 Excel+Power Query 做电商数据分析:从 “每天加班整理数据” 到 “一键生成报表” 的配置教程
在电商运营中,数据是增长的关键驱动力。然而,传统的手工数据处理方式效率低下,耗费大量时间且易出错。本文介绍如何利用 Excel 中的 Power Query 工具,自动化完成电商数据的采集、清洗与分析,大幅提升数据处理效率。通过某美妆电商的实战案例,详细拆解从多平台数据整合到可视化报表生成的全流程,帮助电商从业者摆脱繁琐操作,聚焦业务增长,实现数据驱动的高效运营。
|
11月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
348 71
|
3月前
|
SQL 数据挖掘 BI
数据分析的尽头,是跳出数据看数据!
当前许多企业在数据分析上投入大量资源,却常陷入“数据越看越细,业务越看越虚”的困境。报表繁杂、指标众多,但决策难、行动少,分析流于形式。真正有价值的数据分析,不在于图表多漂亮,而在于能否带来洞察、推动决策、指导行动。本文探讨如何跳出数据、回归业务场景,实现数据驱动的有效落地。
|
4月前
|
SQL 搜索推荐 数据挖掘
数据分析怎么想、怎么用?一文讲透常见思维框架!
在数据分析中,很多人面对数据感到迷茫,主要问题在于缺乏清晰的思维框架。本文介绍了五种常用的数据分析思维框架,如拆解法、对比分析法、5W1H问题导向法等,帮助你在业务场景中理清思路、快速定位问题核心。通过实际案例讲解如何在不同情境下灵活运用这些框架,提升分析效率与逻辑表达能力,真正做到用数据驱动决策。
|
9月前
|
SQL 人工智能 数据可视化
数据团队必读:智能数据分析文档(DataV Note)五种高效工作模式
数据项目复杂,涉及代码、数据、运行环境等多部分。随着AI发展,数据科学团队面临挑战。协作式数据文档(如阿里云DataV Note)成为提升效率的关键工具。它支持跨角色协同、异构数据处理、多语言分析及高效沟通,帮助创建知识库,实现可重现的数据科学过程,并通过一键分享报告促进数据驱动决策。未来,大模型AI将进一步增强其功能,如智能绘图、总结探索、NLP2SQL/Python和AutoReport,为数据分析带来更多可能。
563 142
|
10月前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
574 92
|
数据挖掘 PyTorch TensorFlow
|
11月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
464 73
|
存储 机器学习/深度学习 数据可视化
数据集中存在大量的重复值,会对后续的数据分析和处理产生什么影响?
数据集中存在大量重复值可能会对后续的数据分析和处理产生多方面的负面影响
722 56
|
10月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
315 22

热门文章

最新文章