3月26日云栖精选夜读:如何用AI算法识别骗保行为?蚂蚁保险智能风控模型首次公开!

简介: 阿里妹导读:人生充满意外和不确定性,保险的使命,就是给人以安全感。风控是保险业务正常发展的重要环节,成长于互联网环境下的保险风控更为重要。 今天,阿里工程师正在利用跨平台体系下的海量数据资源和智能风控模型,优化保险风控,提升保险业务整体风控能力,让保险更好帮助人们对抗风险,减少后顾之忧。

          阿里妹导读:人生充满意外和不确定性,保险的使命,就是给人以安全感。风控是保险业务正常发展的重要环节,成长于互联网环境下的保险风控更为重要。 今天,阿里工程师正在利用跨平台体系下的海量数据资源和智能风控模型,优化保险风控,提升保险业务整体风控能力,让保险更好帮助人们对抗风险,减少后顾之忧。


热点热

如何用AI算法识别骗保行为?蚂蚁保险智能风控模型首次公开!

作者:技术小能手

厉害了,蚂蚁金服!创造了中国自己的数据库OceanBase

作者:安和林

深入解读:获Forrester大数据能力高评价的阿里云DataWorks思路与能力

作者:阿里云头条

知识整理

Python数据挖掘与机器学习技术入门实战

作者:汪星人1997 

搭建SolrCloud的详细步骤

作者:代金券优惠

Samza框架-----学习笔记

作者:推荐码发放  

如何在docker中运行MySQL实例

作者:优惠券发放 

MP4文件格式的解析,以及MP4文件的分割算法

作者:xumaojun

美文回顾

Scikit中的特征选择,XGboost进行回归预测,模型优化的实战

作者:大黄有故事

商汤科技徐立:AI 将在10 年内创造一个印度和中国的总产值

作者:技术小能手

理论与实践中的CNN模型结构,如何引领深度学习热潮

作者:nirvanalucky 

【Uber车祸启示录】给创业者上了一课,也是中国自动驾驶超车的机遇

作者:技术小能手

一个小工具,小白也能独立管理自己的Linux服务器

作者:滇池孤鸿

阿里深度学习的“金刚钻”——千亿特征XNN算法及其落地实践

作者:青衫染烟雨

一致性哈希算法及其在分布式系统中的应用

作者:xumaojun


往期精选回


目录
相关文章
|
9天前
|
人工智能 移动开发 前端开发
WeaveFox:蚂蚁集团推出 AI 前端智能研发平台,能够根据设计图直接生成源代码,支持多种客户端和技术栈
蚂蚁团队推出的AI前端研发平台WeaveFox,能够根据设计图直接生成前端源代码,支持多种应用类型和技术栈,提升开发效率和质量。本文将详细介绍WeaveFox的功能、技术原理及应用场景。
374 66
WeaveFox:蚂蚁集团推出 AI 前端智能研发平台,能够根据设计图直接生成源代码,支持多种客户端和技术栈
|
9天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
75 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
19天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
72 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
21天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
62 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
21天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
60 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
22天前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
32 6
【AI系统】QNNPack 算法
|
22天前
|
存储 人工智能 缓存
【AI系统】Im2Col 算法
Caffe 作为早期的 AI 框架,采用 Im2Col 方法优化卷积计算。Im2Col 将卷积操作转换为矩阵乘法,通过将输入数据重排为连续内存中的矩阵,减少内存访问次数,提高计算效率。该方法首先将输入图像转换为矩阵,然后利用 GEMM 库加速计算,最后将结果转换回原格式。这种方式显著提升了卷积计算的速度,尤其适用于通道数较多的卷积层。
47 5
【AI系统】Im2Col 算法
|
22天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
40 5
【AI系统】模型转换流程
|
22天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型转换基本介绍
模型转换技术旨在解决深度学习模型在不同框架间的兼容性问题,通过格式转换和图优化,将训练框架生成的模型适配到推理框架中,实现高效部署。这一过程涉及模型格式转换、计算图优化、算子统一及输入输出支持等多个环节,确保模型能在特定硬件上快速、准确地运行。推理引擎作为核心组件,通过优化阶段和运行阶段,实现模型的加载、优化和高效执行。面对不同框架的模型文件格式和网络结构,推理引擎需具备高度的灵活性和兼容性,以支持多样化的应用场景。
50 4
【AI系统】模型转换基本介绍
|
22天前
|
存储 机器学习/深度学习 人工智能
【AI系统】Winograd 算法
本文详细介绍Winograd优化算法,该算法通过增加加法操作来减少乘法操作,从而加速卷积计算。文章首先回顾Im2Col技术和空间组合优化,然后深入讲解Winograd算法原理及其在一维和二维卷积中的应用,最后讨论算法的局限性和实现步骤。Winograd算法在特定卷积参数下表现优异,但其应用范围受限。
31 2
【AI系统】Winograd 算法

热门文章

最新文章