【月球殖民靠AI】神经网络发现7000个新陨石坑,人类2030年或找到月球定居点

简介: 最近,美国和加拿大的研究人员用人工智能发现了月球上近7000个此前未被发现的陨石坑,仅用时几个小时。未来,人类将有可能在这些陨石坑巨大的阴影下建立月球基地。

人类离开地球后的第一个家园可能很快就会被找到。

最近,美国宾夕法尼亚州立大学的Ari Silburt和加拿大多伦多大学的Mohamad Ali-Dib领导的研究小组,利用人工智能发现了月球上近7000个此前未被发现的陨石坑,仅用时几个小时。

专家说,未来,人类可以在陨石坑巨大的阴影下建立月球基地,这样可以保护殖民者免受太阳辐射的危险。

人工神经网络识别9万张图像,数小时发现6883个新陨石坑

过去,人们在计算月球上的陨石坑时,需要手动查看图像,找到并计算陨石坑的数量,然后根据图像大小计算它们的实际大小。

研究人员也曾尝试过开发算法来识别和计算月球陨石坑,但是当它们用于新的、以前看不见的陨石坑时,往往表现不佳。

02032b997e9ed743db86447a266b5a08137ccf84

Ali-Dib和他的同事开发的算法可以很好地发现不容易识别的月球,甚至水星等其他星球上的陨石坑。

该算法经过训练以识别火山口的边缘,然后对照先前发现的火山口的数据库进行检查,算法使用这些信息来确认新的形状符合已知的火山口形状。这使得算法可以区分陨石坑和其他地质形状,包括山脉和山脊。

为了确定其准确性,研究团队首先在覆盖三分之二的月球的大型数据集上训练神经网络,然后在余下三分之一的月球上测试他们的训练网络。最终的结果表现非常好,它能够识别两倍于传统手动计数的陨石坑。而实际上上,它能够在月球上识别出约7000个以前不明的陨石坑。

492ae18b7768320b80b99b846c23a538aa510463

专家将90000幅月球表面图像输入到人造神经网络,并对图像进行分类并确定直径大于5公里的陨石坑。这张图片显示了AI在非月亮照片上的识别能力。

e7bfda5cb2d8e4a7595fcd0e79924fb0a0f9449a

当机器进行测试时,它找到了6883个新陨石坑,使这个尺寸的已知陨石坑总数增加了一倍。该图像显示原始图像(左),AI对火山口位置(中心)的预测以及这些预测叠加在原始图像上(右图)

238130b7e40633ac5266ac595118e1db70f1076d

然而,人工智能确实不时出现失误,错误地识别出了一些陨石坑,而忽略了其他的陨石坑。大约四分之一正确识别的陨石坑的真实位置没有显示(红色)

Silburt博士说,一旦模型有了更多的改进,AI就可以用来发现成千上万、身份不明的5公里以下的陨石坑。

未来,Ali-Dib表示计划将进一步改进算法,使研究人员能够找到更多的陨石坑,并在其他太阳系体如火星、谷神星(Ceres)、木星和土星的卫星上使用。

通过陨石坑研究太阳系,2030年人类登月找到定居点?

了解陨石坑在月球上的大小和位置非常重要,因为它为我们的太阳系历史提供了一个研究窗口。 Ali-Dib指出,通过研究各种形状、大小和年龄的撞击坑,研究人员可以更好地了解太阳系早期发生的物质分布和物理现象。

由于月球没有大气、板块构造和水,所以几乎没有受到地表侵蚀,因此一些陨石坑的形成时间可以达到40亿年。大陨石坑的年龄也可以通过计算里面有多少个小陨石坑来确定。

793f5c0450d333490fea020efd8df90bee8ba413

LRO拍摄的月球陨石坑

这次研究使用的许多图像是通过美国国家航空航天局的月球侦察轨道飞行器(Lunar Reconnaissance Orbiter ,LRO)获取,该飞行器在2009年发射升空,这是美国“重返月球”计划的第一步,为美国下一步载人探月以及探索太阳系提供重要数据。

LRO返回月球全部数据,如日间温度地图、月球大地测量网格、高分辨率彩色成像和月球的UV反照率(这是衡量太阳辐射被天文物体反射回太空中的比例的测量值)。

0ce5dff7aa04f79dec1eb01c56b850e6ed13fbf0

月球侦察轨道飞行器LRO(意境图)

LRO有助于确定月球上潜在资源点,具有极高的科学价值,资源点能够为人类提供良好的地形和未来机器人和人类执行月球任务所需的安全环境。

欧洲航天局推动的“月球村”计划大使Bernard Foing教授曾表示,到2030年,可能会有六到十个人类先驱者在月球上找到定居点,到2040年人类在月球上的数量可能增长到100人。

ddc5cd36307d640a06e13ee473a39f42d2fd3c34

Bernard Foing

“到了2050年,可能会有一千人,然后......自然你可以设想让家人在那里工作。”Bernard Foing说。

Bernard Foing认为,潜在的月球资源包括玄武岩,这是一种火山岩,它可用作打印3D卫星的原材料。这些卫星可以从月球上发射,因为其重力只有地球的一小部分。

350c24ddef5586c133b87ea0ef78625e480887aa

未来人类月球定居点(意境图)

此外,月球还拥有氦3,这是我们这个星球上罕见的同位素,它理论上可以用来为地球产生更清洁,更安全的核能。

月球上的水被凝结在月亮两极的冰上,而水可以分离成氢气和氧气,两种气体在混合时会爆炸——这能提供火箭燃料。


原文发布时间为:2018-03-19

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号

原文链接:【月球殖民靠AI】神经网络发现7000个新陨石坑,人类2030年或找到月球定居点

相关文章
|
1月前
|
人工智能 安全 算法
利用AI技术提升网络安全防御能力
【10月更文挑战第42天】随着人工智能技术的不断发展,其在网络安全领域的应用也日益广泛。本文将探讨如何利用AI技术提升网络安全防御能力,包括异常行为检测、恶意软件识别以及网络攻击预测等方面。通过实际案例和代码示例,我们将展示AI技术在网络安全防御中的潜力和优势。
|
1月前
|
人工智能 运维 物联网
AI在蜂窝网络中的应用前景
AI在蜂窝网络中的应用前景
54 3
|
2月前
|
机器学习/深度学习 数据采集 人工智能
未来的守护神:AI驱动的网络安全之盾,如何用智慧的光芒驱散网络黑暗势力?揭秘高科技防御系统背后的惊天秘密!
【10月更文挑战第3天】随着网络技术的发展,网络安全问题日益严峻,传统防御手段已显不足。本文探讨了构建AI驱动的自适应网络安全防御系统的必要性及其关键环节:数据采集、行为分析、威胁识别、响应决策和执行。通过Python库(如scapy、scikit-learn和TensorFlow)的应用实例,展示了如何利用AI技术提升网络安全防护水平。这种系统能够实时监控、智能分析并自动化响应,显著提高防护效率与准确性,为数字世界提供更强大的安全保障。
69 2
|
6天前
|
数据采集 机器学习/深度学习 人工智能
基于AI的网络流量分析:构建智能化运维体系
基于AI的网络流量分析:构建智能化运维体系
53 13
|
1月前
|
机器学习/深度学习 人工智能 安全
AI与网络安全:防御黑客的新武器
在数字化时代,网络安全面临巨大挑战。本文探讨了人工智能(AI)在网络安全中的应用,包括威胁识别、自动化防御、漏洞发现和预测分析,展示了AI如何提升防御效率和准确性,成为对抗网络威胁的强大工具。
|
1月前
|
机器学习/深度学习 人工智能 物联网
5G与AI融合:智能网络的新纪元
【10月更文挑战第25天】
73 3
|
2月前
|
人工智能 关系型数据库 数据中心
2024 OCP全球峰会:阿里云为代表的中国企业,引领全球AI网络合作和技术创新
今年的OCP(Open Compute Project)峰会于2024年10月14日至17日在美国加州圣何塞举行,在这场全球瞩目的盛会上,以阿里云为代表的中国企业,展示了他们在AI网络架构、液冷技术、SRv6和广域网等前沿领域的强大创新能力,持续引领全球合作与技术创新。
|
3月前
|
人工智能 数据中心 云计算
AI网络新生态ALS发起成立,信通院、阿里云、AMD等携手制定互连新标准
9月3日,在2024 ODCC开放数据中心大会上,阿里云联合信通院、AMD等国内外十余家业界伙伴发起AI芯片互连开放生态ALS(ALink System)。
AI网络新生态ALS发起成立,信通院、阿里云、AMD等携手制定互连新标准
|
2月前
|
人工智能 自然语言处理 NoSQL
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
54 10