网络数据包收发流程(三):e1000网卡和DMA

简介: 一、硬件布局每个网卡(MAC)都有自己的专用DMA Engine,如上图的 TSEC 和 e1000 网卡intel82546。上图中的红色线就是以太网数据流,DMA与DDR打交道需要其他模块的协助,如TSEC,PCI controller以太网数据在 TSECDDR  PCI_Co...
一、硬件布局
img_b48d4dacb81ed094d85381898620fdd6.jpg
每个网卡(MAC)都有自己的专用DMA Engine,如上图的 TSEC 和 e1000 网卡intel82546。
上图中的红色线就是以太网数据流,DMA与DDR打交道需要其他模块的协助,如TSEC,PCI controller
以太网数据在 TSECDDR  PCI_ControllerDDR 之间的流动,CPU的core是不需要介入的
只有在数据流动结束时(接收完、发送完),DMA Engine才会以外部中断的方式告诉CPU的core

二、DMA Engine
img_f737726829e00e9b2e5c3e6fe578791c.jpe
上面是DMA Engine的框图,以接收为例:
1.在System memory中为DMA开辟一端连续空间,用来BD数组  (一致性dma内存)
  BD是给DMA Engine使用的,所以不同的设备,BD结构不同,但是大致都有状态、长度、指针3个成员。

2.初始化BD数组,status为E,length为0
   在System memory中再开辟一块一块的内存,可以不连续,用来存放以太网包
   将这些内存块的总线地址赋给buf(dma映射)

3.当MAC接收以太网数据流,放在了Rx FIFO中

4.当一个以太网包接收完全后,DMA engine依次做以下事情
    fetch bd:开始一个个的遍历BD数组,直到当前BD状态为Empty为止
    update bd:更新BD状态为Ready
    move data:把数据从Rx FIFO中搬移到System Memory中dma映射的部分
    generate interrupt:数据搬移完了,产生外部中断给cpu core

5.cpu core处理外部中断,此时以太网数据已经在System memory中dma映射的部分了
    解除dma映射,更新bd状态为Empty
    再开辟一端内存,将这块内存的总线地址赋给bd的指针字段

三、内核中DMA相关API

void * dma_alloc_cohrent(struct device *dev, size_t size, dma_addr_t *dma_handle, int flag);
功能:分配一致性dma内存,返回这块内存的虚拟地址EA, 这块内存的物理地址保存在 dma_handle
dev:  NULL也行
size: 分配空间的大小
dma_handle: 用来保存内存的总线地址(物理地址)

注意: 一致性DMA映射BD所占内存就是靠 dma_alloc_cohrent来分配的。

dma_addr_t * dma_map_single(struct device *dev, void *buffer, size_t size, enum dma_data_direction);
功能:将一块连续的内存 buffer 映射为DMA内存来使用。映射后,CPU不能再操作这块 buffer
返回:这块buffer的总线地址(物理地址)
dev: NULL也行
buffer: 一块连续内存的虚拟地址EA
size: 连续内存的大小
dma_data_direction: dma数据流的方向

注意: 流式DMA映射以太网包所占内存先通过 kmalloc来分配,然后通过 dma_map_single来映射给bd的

四、e1000驱动中的DMA

网卡驱动中使用DMA的套路差不多都一样,以e1000驱动为例讲一下( TSEC驱动的dma见这里

4.1 加载e1000网卡驱动

e1000_probe(){                        //主要是初始化钩子函数
     netdev = alloc_etherdev(sizeof(struct e1000_adapter));
    netdev->open = & e1000_open;       //重要
    netdev->stop = &e1000_close;
    netdev->hard_start_xmit = &e1000_xmit_frame;
    netdev->get_stats = &e1000_get_stats;
    netdev->set_multicast_list = &e1000_set_multi;
    netdev->set_mac_address = &e1000_set_mac;
    netdev->change_mtu = &e1000_change_mtu;
    netdev->do_ioctl = &e1000_ioctl;
    e1000_set_ethtool_ops(netdev);
    netdev->tx_timeout = &e1000_tx_timeout;
    netdev->watchdog_timeo = 5 * HZ;
#ifdef CONFIG_E1000_NAPI
    netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); //重要
#endif
}

4.1 启动e1000网卡

   e1000_open() //当用户敲ifconfig up命令时,最终调用网卡驱动的open函数
     -->e1000_setup_all_rx_resources(adapter)
         -->e1000_setup_rx_resources(adapter, &adapter->rx_ring[i])
               //给rx bd分配一致性dma内存
               rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
     -->e1000_configure(adapter)
         -->e1000_configure_rx(adapter)
               adapter->clean_rx = e1000_clean_rx_irq;
               adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
         -->调用 adapter->alloc_rx_buf钩子函数,即 e1000_alloc_rx_buffers
                --> skb = netdev_alloc_skb(netdev, bufsz); //调用kmalloc新建一个skb
                    buffer_info->dma = pci_map_single(pdev,
                        skb->data,
                        adapter->rx_buffer_len,
                        PCI_DMA_FROMDEVICE);               // 给skb->data建立DMA映射
                    rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); //初始化bd的buf指针
     -->e1000_request_irq(adapter);
        //挂rx 中断ISR函数为 e1000_intr()

最终bd数据结构应该是下面这个样子
img_b623447b8ff897fb49ca98e108bbe886.jpg      
4.2 e1000的中断

注意:e1000产生rx中断时,以太网数据包已经在系统内存中,即在skb->data里面
下面的中断处理过程就简略了, 详细的看这里
do_IRQ()
{
    中断上半部
       调用e1000网卡的rx中断函数 e1000_intr()
          触发软中断 (使用NAPI的话)
    中断下半部
       依次调用软中断的所有handler
       在net_rx_action中最终调用e1000的napi_struct.poll()钩子函数,即e1000_clean
       e1000_clean()最终调用 e1000_clean_rx_irq()
}

e1000_clean_rx_irq()
{
     rx_desc = E1000_RX_DESC(*rx_ring, i); //获取rx bd
     status = rx_desc->status;
     skb = buffer_info->skb;
     buffer_info->skb = NULL;

     pci_unmap_single(pdev,                //解除skb->data的DMA映射
                   buffer_info->dma,
                   buffer_info->length,
                   PCI_DMA_FROMDEVICE);
     length = le16_to_cpu(rx_desc->length);
     length -= 4;                          //以太网包的FCS校验就不要了
     skb_put(skb, length);
     skb->protocol = eth_type_trans(skb, netdev);
     netif_receive_skb(skb);               //skb进入协议栈
}
目录
相关文章
|
2月前
|
监控 网络协议 安全
|
2月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
162 73
|
9天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
2月前
|
存储 弹性计算 测试技术
阿里云服务器实例规格vCPU、内存、网络带宽、网络收发包PPS、连接数等性能指标详解
阿里云服务器ECS实例可以分为多种实例规格族。根据CPU、内存等配置,一种实例规格族又分为多种实例规格。而实例规格又包含vCPU、处理器、内存、vTPM、本地存储、网络带宽、网络收发包PPS、连接数、弹性网卡、云盘带宽、云盘IOPS等指标,本文为大家详细介绍实例规格的这些指标,以供大家了解和选择。
121 14
阿里云服务器实例规格vCPU、内存、网络带宽、网络收发包PPS、连接数等性能指标详解
|
26天前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
42 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
9天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9-2):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
|
1月前
|
存储 网络协议 Java
【网络】UDP回显服务器和客户端的构造,以及连接流程
【网络】UDP回显服务器和客户端的构造,以及连接流程
49 2
|
2月前
|
网络协议 网络虚拟化
接收网络包的过程——从硬件网卡解析到IP
【9月更文挑战第18天】这段内容详细描述了网络包接收过程中机制。当网络包触发中断后,内核处理完这批网络包,会进入主动轮询模式,持续处理后续到来的包,直至处理间隙返回其他任务,从而减少中断次数,提高处理效率。此机制涉及网卡驱动初始化时注册轮询函数,通过软中断触发后续处理,并逐步深入内核网络协议栈,最终到达TCP层。整个接收流程分为多个层次,包括DMA技术存入Ring Buffer、中断通知CPU、软中断处理、以及进入内核网络协议栈等多个步骤。
|
29天前
|
网络协议 网络架构
【第三期】计算机网络常识/网络分层模型与数据包封装传输过程
【第三期】计算机网络常识/网络分层模型与数据包封装传输过程
43 0
|
2月前
|
网络协议 C语言
C语言 网络编程(十一)TCP通信创建流程---服务端
在服务器流程中,新增了绑定IP地址与端口号、建立监听队列及接受连接并创建新文件描述符等步骤。`bind`函数用于绑定IP地址与端口,`listen`函数建立监听队列并设置监听状态,`accept`函数则接受连接请求并创建新的文件描述符用于数据传输。套接字状态包括关闭(CLOSED)、同步发送(SYN-SENT)、同步接收(SYN-RECEIVE)和已建立连接(ESTABLISHED)。示例代码展示了TCP服务端程序如何初始化socket、绑定地址、监听连接请求以及接收和发送数据。