根据status信息对MySQL服务器进行优化-1

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群版 2核4GB 100GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介:

网上有很多的文章教怎么配置MySQL服务器,但考虑到服务器硬件配置的不同,具体应用的差别,那些文章的做法只能作为初步设置参考,我们需要根据自己的情况进行配置优化,好的做法是MySQL服务器稳定运行了一段时间后运行,根据服务器的”状态”进行优化。

mysql> show global status;

可以列出MySQL服务器运行各种状态值,另外,查询MySQL服务器配置信息语句:

mysql> show variables;

一、慢查询

mysql> show variables like '%slow%';
+------------------+-------+
| Variable_name    | Value |
+------------------+-------+
| log_slow_queries | ON    |
| slow_launch_time | 2     |
+------------------+-------+
mysql> show global status like '%slow%';
+---------------------+-------+
| Variable_name       | Value |
+---------------------+-------+
| Slow_launch_threads | 0     |
| Slow_queries        | 4148 |
+---------------------+-------+

配置中打开了记录慢查询,执行时间超过2秒的即为慢查询,系统显示有4148个慢查询,你可以分析慢查询日志,找出有问题的SQL语句,慢查询时间不宜设置过长,否则意义不大,最好在5秒以内,如果你需要微秒级别的慢查询,可以考虑给MySQL打补丁:http://www.percona.com/docs/wiki/release:start,记得找对应的版本。

打开慢查询日志可能会对系统性能有一点点影响,如果你的MySQL是主-从结构,可以考虑打开其中一台从服务器的慢查询日志,这样既可以监控慢查询,对系统性能影响又小。

二、连接数

经常会遇见”MySQL: ERROR 1040: Too many connections”的情况,一种是访问量确实很高,MySQL服务器抗不住,这个时候就要考虑增加从服务器分散读压力,另外一种情况是MySQL配置文件中max_connections值过小:

mysql> show variables like 'max_connections';
+-----------------+-------+
| Variable_name   | Value |
+-----------------+-------+
| max_connections | 256   |
+-----------------+-------+

这台MySQL服务器最大连接数是256,然后查询一下服务器响应的最大连接数:

mysql> show global status like 'Max_used_connections';
+----------------------+-------+
| Variable_name        | Value |
+----------------------+-------+
| Max_used_connections | 245   |
+----------------------+-------+

MySQL服务器过去的最大连接数是245,没有达到服务器连接数上限256,应该没有出现1040错误,比较理想的设置是:

Max_used_connections / max_connections  * 100% ≈ 85%

最大连接数占上限连接数的85%左右,如果发现比例在10%以下,MySQL服务器连接数上限设置的过高了。

三、Key_buffer_size

key_buffer_size是对MyISAM表性能影响最大的一个参数,下面一台以MyISAM为主要存储引擎服务器的配置:

mysql> show variables like 'key_buffer_size';
+-----------------+------------+
| Variable_name   | Value      |
+-----------------+------------+
| key_buffer_size | 536870912 |
+-----------------+------------+

分配了512MB内存给key_buffer_size,我们再看一下key_buffer_size的使用情况:

mysql> show global status like 'key_read%';
+------------------------+-------------+
| Variable_name          | Value       |
+------------------------+-------------+
| Key_read_requests      | 27813678764 |
| Key_reads              | 6798830     |
+------------------------+-------------+

一共有27813678764个索引读取请求,有6798830个请求在内存中没有找到直接从硬盘读取索引,计算索引未命中缓存的概率:

key_cache_miss_rate = Key_reads / Key_read_requests * 100%

比如上面的数据,key_cache_miss_rate为0.0244%,4000个索引读取请求才有一个直接读硬盘,已经很BT了,key_cache_miss_rate在0.1%以下都很好(每1000个请求有一个直接读硬盘),如果key_cache_miss_rate在0.01%以下的话,key_buffer_size分配的过多,可以适当减少。

MySQL服务器还提供了key_blocks_*参数:

mysql> show global status like 'key_blocks_u%';
+------------------------+-------------+
| Variable_name          | Value       |
+------------------------+-------------+
| Key_blocks_unused      | 0           |
| Key_blocks_used        | 413543      |
+------------------------+-------------+

Key_blocks_unused表示未使用的缓存簇(blocks)数,Key_blocks_used表示曾经用到的最大的blocks数,比如这台服务器,所有的缓存都用到了,要么增加key_buffer_size,要么就是过渡索引了,把缓存占满了。比较理想的设置:

Key_blocks_used / (Key_blocks_unused + Key_blocks_used) * 100% ≈ 80%

四、临时表

mysql> show global status like 'created_tmp%';
+-------------------------+---------+
| Variable_name           | Value   |
+-------------------------+---------+
| Created_tmp_disk_tables | 21197   |
| Created_tmp_files       | 58      |
| Created_tmp_tables      | 1771587 |
+-------------------------+---------+

每次创建临时表,Created_tmp_tables增加,如果是在磁盘上创建临时表,Created_tmp_disk_tables也增加,Created_tmp_files表示MySQL服务创建的临时文件文件数,比较理想的配置是:

Created_tmp_disk_tables / Created_tmp_tables * 100% <= 25%

比如上面的服务器Created_tmp_disk_tables / Created_tmp_tables * 100% = 1.20%,应该相当好了。我们再看一下MySQL服务器对临时表的配置:

mysql> show variables where Variable_name in ('tmp_table_size', 'max_heap_table_size');
+---------------------+-----------+
| Variable_name       | Value     |
+---------------------+-----------+
| max_heap_table_size | 268435456 |
| tmp_table_size      | 536870912 |
+---------------------+-----------+

只有256MB以下的临时表才能全部放内存,超过的就会用到硬盘临时表。

五、Open Table情况

mysql> show global status like 'open%tables%';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Open_tables   | 919   |
| Opened_tables | 1951  |
+---------------+-------+

Open_tables表示打开表的数量,Opened_tables表示打开过的表数量,如果Opened_tables数量过大,说明配置中table_cache(5.1.3之后这个值叫做table_open_cache)值可能太小,我们查询一下服务器table_cache值:

mysql> show variables like 'table_cache';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| table_cache   | 2048  |
+---------------+-------+

比较合适的值为:

Open_tables / Opened_tables  * 100% >= 85%
Open_tables / table_cache * 100% <= 95%










本文转自 小强测试帮 51CTO博客,原文链接:http://blog.51cto.com/xqtesting/901707,如需转载请自行联系原作者
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
13天前
|
存储 安全 数据挖掘
服务器数据恢复—异常断电导致EVA存储中RAID信息丢失的数据恢复案例
意外断电导致raid硬件损坏或者riad管理信息丢失等raid模块损坏而导致数据丢失的情况非常普遍。正常情况下,磁盘阵列一旦创建完成就不会再对管理模块中的信息进行更改,但是raid管理模块中的信息属于可修改信息,一次或多次的意外断电可能会导致这部分信息被篡改或丢失。断电次数过多甚至会导致raid卡上的元器损坏。
|
17天前
|
关系型数据库 MySQL 数据库
数据迁移脚本优化过程:从 MySQL 到 Django 模型表
在大规模的数据迁移过程中,性能问题往往是开发者面临的主要挑战之一。本文将分析一个数据迁移脚本的优化过程,展示如何从 MySQL 数据库迁移数据到 Django 模型表,并探讨优化前后的性能差异。
|
2天前
|
监控
查看服务器/IIS日志、log、访问信息基本方法
除了手动查看,你也可以使用日志分析工具,如Log Parser、AWStats等,这些工具可以帮助你更方便地分析日志数据。
3 1
|
11天前
|
XML Java 关系型数据库
Action:Consider the following: If you want an embedde ,springBoot配置数据库,补全springBoot的xml和mysql配置信息就好了
Action:Consider the following: If you want an embedde ,springBoot配置数据库,补全springBoot的xml和mysql配置信息就好了
|
11天前
|
存储 弹性计算 大数据
阿里云ECS以其强大的弹性计算与存储能力,为大数据处理提供了灵活、高效、成本优化的解决方案
阿里云ECS在大数据处理中发挥关键作用,提供多样化实例规格适应不同需求,如大数据型实例适合离线计算。ECS与OSS集成实现大规模存储,通过Auto Scaling动态调整资源,确保高效运算。案例显示,使用ECS处理TB级数据,速度提升3倍,成本降低40%,展现其在弹性、效率和成本优化方面的优势。结合阿里云生态系统,ECS助力企业数据驱动创新。
26 1
|
15天前
|
存储 弹性计算 网络协议
阿里云hpc8ae服务器ECS高性能计算优化型实例性能详解
阿里云ECS的HPC优化型hpc8ae实例搭载3.75 GHz AMD第四代EPYC处理器,配备64 Gbps eRDMA网络,专为工业仿真、EDA、地质勘探等HPC工作负载设计。实例提供1:4的CPU内存配比,支持ESSD存储和IPv4/IPv6,操作系统限于特定版本的CentOS和Alibaba Cloud Linux。ecs.hpc8ae.32xlarge实例拥有64核和256 GiB内存,网络带宽和eRDMA带宽均为64 Gbit/s。适用于CFD、FEA、气象预报等场景。
|
16天前
|
存储 关系型数据库 MySQL
mysql optimizer_switch : 查询优化器优化策略深入解析
mysql optimizer_switch : 查询优化器优化策略深入解析
|
16天前
|
关系型数据库 MySQL 数据库
MySQL索引优化:深入理解索引合并
MySQL索引优化:深入理解索引合并
|
17天前
|
NoSQL 关系型数据库 MySQL
linux服务器重启php,nginx,redis,mysql命令
linux服务器重启php,nginx,redis,mysql命令
26 1
|
1天前
|
关系型数据库 MySQL API
MySQL上亿数据查询优化:实践与技巧
MySQL亿级数据查询优化涉及索引设计、分区表、查询语句优化和数据库架构调整。例如,通过为常用查询列创建索引、使用EXPLAIN分析查询计划、避免全表扫描和SELECT *,以及采用垂直拆分、水平拆分和读写分离来提升性能。分区表能减少查询数据量,API接口测试可验证优化效果。
6 0