Hadoop详细配置

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: <div id="blog_content"> <div><br></div> <div>目录 <div> <p><a target="_blank" style="color:rgb(0,102,0)">第1章 概要说明4</a></p> <p><a target="_blank" style="color:rgb(0,102,0)">1.1 Hadoop是什么?4</a></

目录

第1章 概要说明4

1.1 Hadoop是什么?4

1.2 为什么选择CDH版本?4

1.3 集群配置环境4

1.4 网络结构图5

第2章 安装hadoop环境6

2.1 准备安装包6

2.2 默认用户组root:root6

2.3 卸载自带的jdk6

2.4 安装和配置jdk环境6

2.5 配置/etc/hosts6

2.6 配置ssh无密码登陆7

2.7 处理防火墙7

2.8 将hadoop-2.0.0-cdh4.2.0.zip上传到/opt,并解压缩9

2.9 编辑core-site.xml文件9

2.10 编辑hdfs-site.xml文件9

2.11 编辑slaves文件10

2.12 编辑mapred-site.xml文件10

2.13 编辑yarn-site.xml文件11

2.14 编辑.bashrc文件13

2.15 将master01机上的/opt/hadoop拷贝到其他机器上14

2.16 第一次启动hadoop需要先格式化NameNode14

2.17 在master01机上启动hdfs:14

2.18 在master01机上启动mapreduce,historyserver14

2.19 查看master01机的MapReduce15

2.20 查看slave01,slave02的节点15

2.21 检查各台机器的集群进程15

2.22 关闭服务15

第3章 Zookeeper安装16

3.1 准备安装包16

3.2 解压16

3.3 修改zoo.cfg文件16

3.4 修改环境变量17

3.5 创建data文件夹及修改myid文件17

3.6 将文件复制至其他机器17

3.7 启动18

3.8 检查是否成功18

3.9 停止服务18

3.10 参考文档18

第4章 Hive的安装19

4.1 准备安装包19

4.2 准备机器19

4.3 访问mysql19

4.4 配置hive-site.xml文件,将meta信息保存在mysql里19

4.5 将mysql-connector-java-5.1.18.tar.gz解压22

4.6 Mysql的一些操作22

4.7 查看日志记录22

4.8 Hive导入本地数据命令22

第5章 Hive+Thrift+PHP整合23

5.1 准备安装包23

5.2 编辑代码23

5.3 启动hiveserver24

5.4 查看默认开启的10000端口24

5.5 测试24

5.6 出错提示及解决办法24

第6章 sqoop安装使用25

6.1 准备安装包25

6.2 前提工作25

6.3 安装25

6.4 放置mysql驱动包25

6.5 修改configure-sqoop文件25

6.6 将路径加入PATH25

6.7 使用测试26

6.8 出错提示及解决办法27

6.9 参考27

 

第1章 概要说明

1.1 Hadoop是什么?

Hadoop一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以流的形式访问(streaming access)文件系统中的数据。

1.2 为什么选择CDH版本?

?0?1 CDH基于稳定版Apache Hadoop,并应用了最新Bug修复或者Feature的Patch。Cloudera常年坚持季度发行Update版本,年度发行Release版本,更新速度比Apache官方快,而且在实际使用过程中CDH表现无比稳定,并没有引入新的问题。

?0?1 Cloudera官方网站上安装、升级文档详细,省去Google时间。

?0?1 CDH支持Yum/Apt包,Tar包,RPM包,Cloudera Manager四种方式安装

?0?1 获取最新特性和最新Bug修复;安装维护方便,节省运维时间

1.3 集群配置环境

[root@master01 ~]# lsb_release -a

LSBVersion:    :base-4.0-ia32:base-4.0-noarch:core-4.0-ia32:core-4.0-noarch:graphics-4.0-ia32:graphics-4.0-noarch:printing-4.0-ia32:printing-4.0-noarch

Distributor ID: CentOS

Description:    CentOS release 6.4 (Final)

Release:        6.4

Codename:       Final

1.4 网络结构图



 

第2章 安装hadoop环境

2.1 准备安装包

jdk-7-linux-i586.rpm   [77.2M]

hadoop-2.0.0-cdh4.2.0  [129M]   

此安装包URL下载:http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html


http://archive.cloudera.com/cdh4/cdh/4/


2.2 默认用户组root:root

2.3 卸载自带的jdk

[root@master01 local]# rpm -qa | grep jdk

java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.i686

yum -y remove java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.i686

yum -y remove java-1.6.0-openjdk-1.6.0.0-1.50.1.11.5.el6_3.i686

2.4 安装和配置jdk环境

[root@master01 local]# rpm -ivh jdk-7-linux-i586.rpm

Preparing...                ########################################### [100%]

   1:jdk                    ########################################### [100%]

& 注意

下面有设置JAVA_HOME环境的清单,写在~/.bashrc.sh文件里

另外请注意:生产环境下一般为64位机,请下载相应的64位JDK包进行安装

2.5 配置/etc/hosts

vi /etc/hosts

192.168.2.18   master01

192.168.2.19   master02

192.168.2.163  slave01

192.168.2.38   slave02

192.168.2.212   slave03

& 注意:其他机器也要修改

rsync  -vzrtopgu   --progress /etc/hosts 192.168.2.38:/etc/hosts

2.6 配置ssh无密码登陆

ssh-keygen -t rsa

ssh-copy-id -i ~/.ssh/id_rsa.pub root@slave01

ssh-copy-id -i ~/.ssh/id_rsa.pub root@slave02

& 注意

Master01机本身也要设置一下哦!

cd ~

cat id_rsa.pub >>authorized_keys

2.7 处理防火墙

service iptables stop

& 说明

如果不关闭防火墙,让datanode通过namenode机的访问,请配置slave01,slave02等相关机器的iptables表,各台机器都要能互相访问

vi /etc/sysconfig/iptables

添加:

-I INPUT -s 192.168.2.18 -j ACCEPT

-I INPUT -s 192.168.2.38 -j ACCEPT

-I INPUT -s 192.168.2.87 -j ACCEPT

开启master01的8088和50070端口,方便WEB访问namenode和mapreduce

图1 

 

图2 

 

2.8 将hadoop-2.0.0-cdh4.2.0.zip上传到/opt,并解压缩

tar xzvf hadoop-2.0.0-cdh4.2.0.tar.gz

mv hadoop-2.0.0-cdh4.2.0 hadoop

cd hadoop/etc/hadoop/


③ 解压后进入:~/bin/hadoop-0.20.2/conf/,修改配置文件:

修改hadoop-env.sh:

export JAVA_HOME=/root/bin/jdk1.6.0_32
转载注明出处:博客园 石头儿 http://www.cnblogs.com/shitouer/

hadoop-env.sh里面有这一行,默认是被注释的,只需要把注释去掉,并且把JAVA_HOME 改成你的java安装目录即可


2.9 编辑core-site.xml文件

vi core-site.xml

<configuration>

<property>

     <name>fs.defaultFS</name>

        <value>hdfs://master01</value>

</property>

<property>

        <name>fs.trash.interval</name>

        <value>10080</value>

</property>

<property>

        <name>fs.trash.checkpoint.interval</name>

        <value>10080</value>

</property>

</configuration>

2.10 编辑hdfs-site.xml文件

vi hdfs-site.xml

<configuration>

<property>

          <name>dfs.replication</name>

          <value>1</value>

</property>

<property>

        <name>hadoop.tmp.dir</name>

        <value>/opt/data/hadoop-${user.name}</value>

</property>

<property>

        <name>dfs.namenode.http-address</name>

        <value>master01:50070</value>

</property>

<property>

        <name>dfs.secondary.http.address</name>

        <value>master02:50090</value>

</property>

<property>

        <name>dfs.webhdfs.enabled</name>

        <value>true</value>

</property>

</configuration>

2.11 编辑slaves文件

vi slaves

slave01

slave02

2.12 编辑mapred-site.xml文件

cp mapred-site.xml.template mapred-site.xml

vi mapred-site.xml

<configuration>

<property>

         <name>mapreduce.framework.name</name>

         <value>yarn</value>

</property>

<property>

         <name>mapreduce.jobhistory.address</name>

         <value>master01:10020</value>

</property>

<property>

         <name>mapreduce.jobhistory.webapp.address</name>

         <value>master01:19888</value>

</property>

</configuration>

2.13 编辑yarn-site.xml文件

<!--[if gte mso 9]><xml><w:WordDocument><w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel><w:DisplayHorizontalDrawingGridEvery>0</w:DisplayHorizontalDrawingGridEvery><w:DisplayVerticalDrawingGridEvery>2</w:DisplayVerticalDrawingGridEvery><w:DocumentKind>DocumentNotSpecified</w:DocumentKind><w:DrawingGridVerticalSpacing>7.8</w:DrawingGridVerticalSpacing><w:View>Normal</w:View><w:Compatibility></w:Compatibility><w:Zoom>0</w:Zoom></w:WordDocument></xml><![endif]-->

vi yarn-site.xml

<configuration>

<!-- Site specific YARN configuration properties -->

<property>

    <name>yarn.resourcemanager.resource-tracker.address</name>

    <value>master01:8031</value>

  </property>

  <property>

    <name>yarn.resourcemanager.address</name>

    <value>master01:8032</value>

  </property>

  <property>

    <name>yarn.resourcemanager.scheduler.address</name>

    <value>master01:8030</value>

  </property>

  <property>

    <name>yarn.resourcemanager.admin.address</name>

    <value>master01:8033</value>

  </property>

  <property>

    <name>yarn.resourcemanager.webapp.address</name>

    <value>master01:8088</value>

  </property>

  <property>

    <description>Classpath for typical applications.</description>

    <name>yarn.application.classpath</name>

    <value>$HADOOP_CONF_DIR,$HADOOP_COMMON_HOME/share/hadoop/common/*,

    $HADOOP_COMMON_HOME/share/hadoop/common/lib/*,

 $HADOOP_HDFS_HOME/share/hadoop/hdfs/*,$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*,

    $YARN_HOME/share/hadoop/yarn/*,$YARN_HOME/share/hadoop/yarn/lib/*,

    $YARN_HOME/share/hadoop/mapreduce/*,$YARN_HOME/share/hadoop/mapreduce/lib/*</value>

  </property>

  <property>

    <name>yarn.nodemanager.aux-services</name>

    <value>mapreduce.shuffle</value>

  </property>

  <property>

    <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>

    <value>org.apache.hadoop.mapred.ShuffleHandler</value>

  </property>

  <property>

    <name>yarn.nodemanager.local-dirs</name>

    <value>/opt/data/yarn/local</value>

  </property>

  <property>

    <name>yarn.nodemanager.log-dirs</name>

    <value>/opt/data/yarn/logs</value>

  </property>

  <property>

    <description>Where to aggregate logs</description>

    <name>yarn.nodemanager.remote-app-log-dir</name>

    <value>/opt/data/yarn/logs</value>

  </property>

  <property>

    <name>yarn.app.mapreduce.am.staging-dir</name>

    <value>/user</value>

 </property>

</configuration>

1.1 编辑.bashrc文件

cd ~

vi .bashrc

#export LANG=zh_CN.utf8

export JAVA_HOME=/usr/java/jdk1.7.0

export JRE_HOME=$JAVA_HOME/jre

export CLASSPATH=./:$JAVA_HOME/lib:$JRE_HOME/lib:$JRE_HOME/lib/tools.jar

export HADOOP_HOME=/opt/hadoop

export HIVE_HOME=/opt/hive

export HBASE_HOME=/opt/hbase

export HADOOP_MAPRED_HOME=${HADOOP_HOME}

export HADOOP_COMMON_HOME=${HADOOP_HOME}

export HADOOP_HDFS_HOME=${HADOOP_HOME}

export YARN_HOME=${HADOOP_HOME}

export HADOOP_YARN_HOME=${HADOOP_HOME}

export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop

export HDFS_CONF_DIR=${HADOOP_HOME}/etc/hadoop

export YARN_CONF_DIR=${HADOOP_HOME}/etc/hadoop

export PATH=$PATH:$HOME/bin:$JAVA_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin:$HIVE_HOME/bin

source .bashrc

1.2 将master01机上的/opt/hadoop拷贝到其他机器上

rsync -vzrtopgu   --progress hadoop  slave01:/opt/

rsync -vzrtopgu   --progress hadoop  slave02:/opt/

或者

rsync -vzrtopgu   --progress hadoop  192.168.2.38:/opt/

rsync -vzrtopgu   --progress hadoop  192.168.2.163:/opt/

& rsync命令参数解释

-v, --verbose 详细模式输出 

-z, --compress 对备份的文件在传输时进行压缩处理 

-r, --recursive 对子目录以递归模式处理 

-t, --times 保持文件时间信息 

-o, --owner 保持文件属主信息 

-p, --perms 保持文件权限 

-g, --group 保持文件属组信息 

-u, --update 仅仅进行更新,也就是跳过所有已经存在于DST,并且文件时间晚于要备份的文件。(不覆盖更新的文件) 

1.3 第一次启动hadoop需要先格式化NameNode

/opt/hadoop/bin/hadoop namenode -format

& 说明:

该操作只做一次。当修改了配置文件时,需要重新格式化 

1.4 在master01机上启动hdfs:

/opt/hadoop/sbin/start-dfs.sh

1.5 在master01机上启动mapreduce,historyserver

/opt/hadoop/sbin/start-yarn.sh

/opt/hadoop/sbin/mr-jobhistory-daemon.sh start historyserver

1.6 查看master01机的MapReduce

http://192.168.2.18:8088/cluster

1.7 查看slave01,slave02的节点

http://192.168.2.163:8042/node/node

1.8 检查各台机器的集群进程

[root@master01 ~]# jps

5389 NameNode

5980 Jps

5710 ResourceManager

7032 JobHistoryServer

[root@slave01 ~]# jps

3187 Jps

3124 SecondaryNameNode

[root@slave02~]# jps

3187 Jps

3124 DataNode

5711 NodeManager

1.9 关闭服务

/opt/hadoop/sbin/stop-all.sh

第2章 Zookeeper安装

2.1 准备安装包

zookeeper-3.4.5-cdh4.2.0.tar.gz

2.2 解压

tar xzvf zookeeper-3.4.5-cdh4.2.0.tar.gz

mv zookeeper-3.4.5-cdh4.2.0 zookeeper

2.3 修改zoo.cfg文件

cd conf/

cp zoo_sample.cfg zoo.cfg

vi zoo.cfg

# The number of milliseconds of each tick

tickTime=2000

# The number of ticks that the initial

# synchronization phase can take

initLimit=10

# The number of ticks that can pass between

# sending a request and getting an acknowledgement

syncLimit=5

# the directory where the snapshot is stored.

# do not use /tmp for storage, /tmp here is just

# example sakes.

dataDir=/opt/zookeeper/data

#dataLogDir=/opt/zookeeper/log

# the port at which the clients will connect

clientPort=2181

#

# Be sure to read the maintenance section of the

# administrator guide before turning on autopurge.

#

http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance

#

# The number of snapshots to retain in dataDir

#autopurge.snapRetainCount=3

# Purge task interval in hours

# Set to "0" to disable auto purge feature

#autopurge.purgeInterval=1

server.1=master01:2888:3888     

server.2=master02:2888:3888     

server.3=slave01:2888:3888

server.4=slave02:2888:3888

2.4 修改环境变量

vi ~/.bashrc

export ZOOKEEPER_HOME=/opt/zookeeper

export PATH=$PATH:$ZOOKEEPER_HOME/bin

2.5 创建data文件夹及修改myid文件

mkdir /opt/zookeeper/data

touch myid

vi myid

第一台机器写入数字1

第二台机器写入数字2

依此类推

2.6 将文件复制至其他机器

rsync -vzrtopgu   --progress zookeeper  master02:/opt/

rsync -vzrtopgu   --progress zookeeper  slave01:/opt/

rsync -vzrtopgu   --progress zookeeper  slave02:/opt/

2.7 启动

sh /opt/zookeeper/bin/zkServer.sh start

[root@master01 zookeeper]# jps

3459 JobHistoryServer

6259 Jps

2906 NameNode

3171 ResourceManager

6075 QuorumPeerMain

2.8 检查是否成功

/opt/zookeeper/bin/zkCli.sh -server master01:2181 

或者

sh /opt/zookeeper/bin/zkServer.sh stop

2.9 停止服务

sh /opt/zookeeper/bin/zkServer.sh stop

2.10 参考文档

http://archive.cloudera.com/cdh4/cdh/4/zookeeper-3.4.5-cdh4.2.0/

第3章 Hive的安装

3.1 准备安装包

hive-0.10.0-cdh4.2.0   [43.2M]

mysql-connector-java-5.1.18.tar.gz   [3.65M]

3.2 准备机器

slave03机器,安装hive+thrift+sqoop,专门作为数据分析用途。

3.3 访问mysql

和mysql整合前,请务必配置好各机器间能访问Mysql服务器机 

GRANT select, insert, update, delete ON *.* TO 'hadoop'@'slave01' IDENTIFIED BY 'hadoop';

GRANT select, insert, update, delete ON *.* TO 'hadoop'@'slave01' IDENTIFIED BY 'hadoop';

GRANT select, insert, update, delete ON *.* TO 'hadoop'@'slave01' IDENTIFIED BY 'hadoop';

flush privileges;

show grants for 'hive'@'slave03';

revoke all on *.* from 'hadoop'@'slave01';

drop user 'hive'@'slave03';

& 说明

测试环境下,本人仍然用slave03机做mysql服务器。在实际生产环境中,建议用专门的机器做Mysql。

3.4 配置hive-site.xml文件,将meta信息保存在mysql里

cd /opt/hive

vi hive-site.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>

  <name>javax.jdo.option.ConnectionURL</name><value>jdbc:mysql://slave03:3306/hive?createDatabaseIfNotExist=true&characterEncoding=UTF-8</value> 

 <description>JDBC connect string for a JDBC metastore</description>

</property>

<property>

  <name>javax.jdo.option.ConnectionDriverName</name>

  <value>com.mysql.jdbc.Driver</value>

  <description>Driver class name for a JDBC metastore</description>

</property>

<property>

  <name>javax.jdo.option.ConnectionUserName</name>

  <value>hadoop</value>

  <description>username to use against metastore database</description>

</property>

<property>

  <name>javax.jdo.option.ConnectionPassword</name>

  <value>hadoop</value>

  <description>password to use against metastore database</description>

</property>

<property>

 <name>mapred.job.tracker</name>

 <value>master01:8031</value>

</property>

<property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

</property>

<property>

  <name>hive.metastore.warehouse.dir</name>

  <value>/opt/data/warehouse-${user.name}</value>

  <description>location of default database for the warehouse</description>

</property>

<property>

  <name>hive.exec.scratchdir</name>

  <value>/opt/data/hive-${user.name}</value>

  <description>Scratch space for Hive jobs</description>

</property>

<property>

  <name>hive.querylog.location</name>

  <value>/opt/data/querylog-${user.name}</value>

  <description>

    Location of Hive run time structured log file

  </description>

</property>

<property>

  <name>hive.support.concurrency</name>

  <description>Enable Hive's Table Lock Manager Service</description>

  <value>false</value>

</property>

<property>

  <name>hive.hwi.listen.host</name>

  <value>master01</value>

  <description>This is the host address the Hive Web Interface will listen on</description>

</property>

<property>

  <name>hive.hwi.listen.port</name>

  <value>9999</value>

  <description>This is the port the Hive Web Interface will listen on</description>

</property>

<property>

  <name>hive.hwi.war.file</name>

  <value>lib/hive-hwi-0.10.0-cdh4.2.0.war</value>

  <description>This is the WAR file with the jsp content for Hive Web Interface</description>

</property>

</configuration>

3.5 将mysql-connector-java-5.1.18.tar.gz解压

tar xzvf mysql-connector-java-5.1.18.tar.gz

mv mysql-connector-java-5.1.18-bin.jar /opt/hive/lib

3.6 Mysql的一些操作

create database hive;

alter database hive character set latin1;

& 注意:

如果不设置上述命令,则会出现如下:

Specified key was too long; max key length is 767 bytes

3.7 查看日志记录

tail /tmp/root/hive.log

3.8 Hive导入本地数据命令

1) CREATE TABLE mytest2(num INT, name STRING)  COMMENT 'only a test'                           ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE;   

2) LOAD DATA LOCAL INPATH '/var/22.txt' INTO TABLE mytest2;   

第4章 Hive+Thrift+PHP整合

4.1 准备安装包

Thrift.zip    [71.7K]  下载URL:http://download.csdn.net/detail/jiedushi/3409880

PHP安装,略过

4.2 编辑代码

vi test.php

<?php

    $GLOBALS['THRIFT_ROOT'] = '/home/wwwroot/Thrift/';

    require_once $GLOBALS['THRIFT_ROOT'] . 'packages/hive_service/ThriftHive.php';

    require_once $GLOBALS['THRIFT_ROOT'] . 'transport/TSocket.php';

    require_once $GLOBALS['THRIFT_ROOT'] . 'protocol/TBinaryProtocol.php';

 

    $transport = new TSocket('slave03', 10000);

    $protocol = new TBinaryProtocol($transport);

    $client = new ThriftHiveClient($protocol);

    $transport->open();

 

    #$client->execute('add jar /opt/hive/lib/hive-contrib-0.10.0-cdh4.2.0.jar ');

    $client->execute("LOAD DATA LOCAL INPATH '/var/22.txt' INTO TABLE mytest2");

    $client->execute("SELECT COUNT(1) FROM mytest2");

    var_dump($client->fetchAll());

    $transport->close();

?>

& 说明:

/var/22.txt文件内容为:

1       jj

2       kk

与上一章2.5的操作同步

4.3 启动hiveserver

/opt/hive/bin/hive --service hiveserver >/dev/null 2>/dev/null &

4.4 查看默认开启的10000端口

netstat -lntp|grep 10000

4.5 测试

php test.php

4.6 出错提示及解决办法

?0?1 Warning: stream_set_timeout(): supplied argument is not a valid stream resource in /home/wwwroot/Thrift/transport/TSocket.php on line 213

修改php.ini中的disable_functions

disable_functions = passthru,exec,system,chroot,scandir,chgrp,chown,shell_exec,proc_get_status,ini_alter,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru

第5章 sqoop安装使用

5.1 准备安装包

sqoop-1.4.2-cdh4.2.0.tar.gz     [6M]

5.2 前提工作

按第一章的介绍步骤配置好hadoop,环境变量HADOOP_HOME已经设置好。

5.3 安装

cd /opt/

tar xzvf sqoop-1.4.2-cdh4.2.0.tar

mv sqoop-1.4.2-cdh4.2.0 sqoop

5.4 放置mysql驱动包

将mysql-connector-java-5.1.18-bin.jar包放至/opt/sqoop/lib下

5.5 修改configure-sqoop文件

vi /opt/sqoop/bin/configure-sqoop

因为没安装hbase,请注释

#if [ ! -d "${HBASE_HOME}" ]; then

#  echo "Warning: $HBASE_HOME does not exist! HBase imports will fail."

#  echo 'Please set $HBASE_HOME to the root of your HBase installation.'

#fi

5.6 将路径加入PATH

vi ~/.bashrc

export PATH=$PATH:$HOME/bin:$JAVA_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin:$HIVE_HOME/bin:$ANT_HOME/bin:/opt/sqoop/bin

5.7 使用测试

?0?1 列出mysql数据库中的所有数据库命令

sqoop list-databases --connect jdbc:mysql://slave03:3306/ --username hadoop --password hadoop

?0?1 列出表名:

sqoop list-tables -connect jdbc:mysql://slave03/ggg -username hadoop -password hadoop

?0?1 将关系型数据的表结构复制到hive中

sqoop create-hive-table --connect jdbc:mysql://master01:3306/ggg --table hheccc_area --username hadoop --password hadoop --hive-table ggg_hheccc_area

?0?1 从关系数据库导入文件到hive中

sqoop import -connect jdbc:mysql://slave03/ggg -username hadoop -password hadoop -table sp_log_fee -hive-import --hive-table hive_log_fee --split-by id -m 4

& 参照

一般导入: 

import \
       --append \
       --connect $DS_BJ_HOTBACKUP_URL \
       --username $DS_BJ_HOTBACKUP_USER \
       --password $DS_BJ_HOTBACKUP_PWD \
       --table 'seven_book_sync' \
       --where "create_date >= '${par_31days}' and create_date < '${end_date}'" \
       --hive-import \
       --hive-drop-import-delims \
       --hive-table ${hive_table} \        //可以点分法识别schema.table
       --m 1

以时间作为增量条件是最好的办法

并行导入:

sqoop import --append --connect $CONNECTURL --username $ORACLENAME --password $ORACLEPASSWORD --target-dir $hdfsPath  --m 12 --split-by CLIENTIP --table $oralceTableName --columns $columns --fields-terminated-by '\001'  --where "data_desc='2011-02-26'" 

增量导入:

sqoop import   --connect jdbc:mysql://master01:3306/ggg --username hadoop --password hadoop --table hheccc_area --columns "id,name,reid,disorder" --direct --hive-import   --hive-table hheccc_area --incremental append  --check-column id --last-value 0

sqoop job --exec area_import

以上为网上找来的命令,经测试,不起作用。留着仅供参考。

?0?1 将hive中的表数据导出到mysql中

sqoop export --connect jdbc:mysql://master01:3306/ggg --username hadoop --password hadoop --table mytest2 --export-dir /opt/data/warehouse-root/ggg_hheccc_area

& 备注

分区保存:/user/hive/warehouse/uv/dt=2011-08-03

5.8 出错提示及解决办法

?0?1 Encountered IOException running import job: org.apache.hadoop.fs.FileAlreadyExistsException: Output directory hdfs://master01/user/root/hheccc_area already exists

/opt/hadoop/bin/hadoop fs -rm -r /user/root/hheccc_area

5.9 参考

http://archive.cloudera.com/cdh/3/sqoop/SqoopUserGuide.html

http://sqoop.apache.org/docs/1.4.2/SqoopUserGuide.html

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
2月前
|
分布式计算 Hadoop Shell
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
72 4
|
2月前
|
XML 分布式计算 资源调度
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
159 5
|
2月前
|
SQL 存储 分布式计算
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
45 3
|
2月前
|
XML 资源调度 网络协议
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(二)
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(二)
104 4
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-01-基础环境搭建 超详细 Hadoop Java 环境变量 3节点云服务器 2C4G XML 集群配置 HDFS Yarn MapRedece
大数据-01-基础环境搭建 超详细 Hadoop Java 环境变量 3节点云服务器 2C4G XML 集群配置 HDFS Yarn MapRedece
81 4
|
2月前
|
SQL 分布式计算 Hadoop
Hadoop-34 HBase 安装部署 单节点配置 hbase-env hbase-site 超详细图文 附带配置文件
Hadoop-34 HBase 安装部署 单节点配置 hbase-env hbase-site 超详细图文 附带配置文件
80 2
|
2月前
|
SQL 存储 数据管理
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
60 2
|
2月前
|
分布式计算 Hadoop
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
48 1
|
3月前
|
分布式计算 Hadoop Devops
Hadoop集群配置https实战案例
本文提供了一个实战案例,详细介绍了如何在Hadoop集群中配置HTTPS,包括生成私钥和证书文件、配置keystore和truststore、修改hdfs-site.xml和ssl-client.xml文件,以及重启Hadoop集群的步骤,并提供了一些常见问题的故障排除方法。
83 3
Hadoop集群配置https实战案例
|
2月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
49 0

相关实验场景

更多
下一篇
无影云桌面