【ELK入门】Elastic中文社区运维监控实战之架构篇

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 阿里云MVP曾勇撰写的《ELK运维监控入门实战》系列,以Elasticsearch中文社区网站运维监控体系搭建作为案例,讲解了ELK监控系统的相关原理和技术实现,可作为对ELK感兴趣的同学的入门级文章。本篇作为第一篇,介绍了项目背景和技术架构。

项目背景

本文为系列文章第一篇,主要介绍如何把 Elastic 中文社区的网站服务器监控起来,对有同样想了解如何使用 Elastic Stack 来做运维监控的同学,可以作为一个很好的参考和入门资料,学习门槛定义为入门级。

首先,我们要监控的网站,也就是大家现在正在访问的 Elastic 官方中文社区,网址:elasticsearch.cn,这个网站基于开源的 WeCenter 搭建,开发语言是 PHP,后端数据库是 MySQL,目前只有一台服务器,由 ConvertLab 友情无偿赞助,大写的赞!再次感谢!

服务器部署环境是 Ubuntu 16.04.2,部署了以下服务及软件:

  • Nginx - Http 反向代理,不要介绍了吧
  • PHP-FPM - 一个常用的 PHP FastCGI 管理
  • Elasticsearch - Elasticsearch 服务,用于社区的垂直搜索服务 Elastic情报局服务
  • GOPA - 可以说是为社区而写的,一个轻量级的爬虫,用于爬取 Elatic 周边相关相关资料,创建索引存放到 Elasticsearch 里面,提供垂直搜索服务。代码地址
  • Grok Debugger - 一个 Java 的 Grok pattern 调试服务,方便大家调试 Grok 日志解析规则。
    服务器上所有的财产就这些了,一个平淡无奇的网站,基本上所有的东西都能公开访问到,这个网站的目的就是为所有 Elastic 爱好者服务的,供大家交流和沟通的专属平台,所以请各位黑客大侠不要再扫描和攻击啦,画一个简单的拓扑图如下所示:

basics_v3

作为一个合格的网管,除了重启服务器之外,还必须要保证网站的正常运行,所以了解网站的运行情况就变成了一个需要解决的首要问题,我们可以先把任务具体列一下:

  • 网站是否正常访问,各项服务有没有挂
  • 网站访问情况如何,用户访问速度如何
  • 网站访客统计分析,访客相关数据分析
  • 服务器的各项指标,详细指标监控分析
  • 服务器的各项服务,日志集中分析处理
  • 服务器是否很安全,有没有黑客来造访
  • 数据是否安全备份,有没有定期测试过

实在编不下去了,话说对的还蛮齐。说人话就是监控起服务器的各项指标和收集服务的日志,然后出几个分析的 Dashboard,监控报警整起来。

技术选型

结合社区监控场景,需要的工具主要是如下几个:

监控数据存储:Elasticsearch

Elasticsearch 是一个分布式的 RESTful 风格的搜索和数据分析引擎。简单易用,用户众多,性能优良,久经考验,支持单节点部署到虚拟机,并可随着业务增长无缝伸缩扩容至上千个节点规模的集群,PB 级别数据也不在话下。

日志数据和指标监控数据都能放,通过集中式存储所有的这些时序型数据,可以快速方便的对这些数据进行分析和关联,实在是排障运维和性能调优的不二选择,你如果还不知道 Elasticsearch,那我只能说你真的是 out 了。

日志数据收集:Filebeat

Elastic Beats 家族的一员,Go 语言编写,轻量级,无依赖,这样就可以很方便的完成收集端的部署,所以如果你的场景和我一样, 可以优先使用 Filebeat 代替 Logstash 来收集日志,当然如果有日志的进一步加工,可以让 Filebeat 把数据发送给 Logstash,然后 Logstash 处理完之后再发送给 Elasticsearch。

Filebeat 使用很灵活,可以指定你的日志路径来进行收集,还可以对数据进行预过滤,对于一些常见的监控需求,Filebeat 以模块的方式替你打包好了一切,如:日志路径配置、解析规则、机器学习的任务,甚至还自带 Dashboard,简单几个操作,就可以完成从数据收集到最终可视化分析的所有工作。

指标数据收集:Metricbeat

我们这次需要监控的服务器都是一些常规的指标,而 Metricbeat 刚好都支持这些指标的收集。Metricbeat 同样也是 Elastic Beats 家族的一员,同样也是开源的。定位是一个轻量级的监控指标采集器,采用 Go 语言编写,同样提供的是一个很小的无依赖的二进制文件包,能够收集服务器(Linux、Windows、Mac)本身的运行指标,如: CPU 使用率、内存、文件系统、磁盘 IO 和网络 IO 统计数据等,还能获取服务器上面的各项服务的运行指标,常见的如: Apache、NGINX、MongoDB、MySQL、PostgreSQL、Prometheus、Redis 等都有直接支持,并且内置了 Elasticsearch 索引和 mapping 设置,以及 Ingest pipeline 设置,还提前预置了不少 Kibana 的 Dashboard,开箱即用、即分析。

数据分析展现:Kibana

和 Elasticsearch 工作的最佳拍档,结合 Elasticsearch 的实时分析能力,可以非常方便的对各种数据进行搜索和分析,你可以灵活的自定义的各种图形展现和 Dashboard,不用编写一行代码,即可进行数据分析,除了分析,还整合了 Elastic Stack 的各个产品的管理功能,作为 Elastic Stack 的图形交互终端。

除了上面这些工具,后续我们还可以考虑使用 Auditbeat 来收集服务器的安全行为日志,使用 Heartbeat 来监控各个服务的端口是否正常,我们先完成基本的监控之后,再慢慢将这些加上。

可以看到,我们没有用到 Logstash。是的,这个规模的监控,可以不考虑 Logstash,这样我们可以做到架构简单和足够的轻量级。

上面列的这些软件都是 Elastic 家族的产品,并且都是开源的,所有的源码都在:https://github.com/elastic/

部署方案

在收集数据之前,我们需要明确我们数据放在哪里,毫无疑问,所有的数据都将放在 Elasticsearch 里面,不过 Elasticsearch 不能部署在 Elastic 中文社区的这台服务器上面,一个是资源的限制,另外一个是基于安全的考虑,如果 Elastic 社区的服务器挂了,数据不光收不到,连什么时候挂的都不知道。所以我们需要把 Elasticsearch 服务搭建在别的地方,有多种选择:

  • 使用 Elastic Cloud,很方便就能开通,缺点国内访问速度慢,暂时还没开放机器学习的功能。
  • 使用阿里云的 Elasticsearch,Elastic 官方合作伙伴,国内唯一包含 X-Pack 的完整功能的 Elasticsearch 云服务,国内访问速度快。
  • 自己搭建的 Elasticsearch 集群。

使用阿里云的 Elasticsearch 无疑很方便,不过我家里刚好有一台服务器,型号 HP Gen8,16GB 内存,上面运行了 SmartOS,跑几个 zone 很轻松,每天用来备份社区的数据库,再来起一个 Elasticsearch 服务也很方便,通过路由器将内网 IP 映射出去,让社区服务器将监控数据发送到这台服务器上面来,安全上面,需要保证这台服务器不被黑客攻击,需要做一些必要的访问控制,可以使用 X-Pack 的身份验证,结合 IP 白名单功能,只允许内网和 Elastic 中文社区服务器的 IP 访问。我们将之命名为:Ops Center,方便后面招呼。

可以看到,Elastic 社区服务器除了启动 Filebeat 和 Metricbeat 之外,不需要额外做什么服务器本身的设置。

这里画一个简单的部署拓扑图,方便理解:

basics_v3

本篇就写到这里,未完待续。

作者介绍

曾勇(Medcl)
Elastic开发工程师、Elasticsearch中文社区管理者、阿里云MVP

在分布式搜索、高性能、高可用架构、自动化运维等方面积累了超过七年的经验。曾勇是Elasticsearch国内首批用户,自2010年起就开始接触Elasticsearch并投入到生产环境中使用,并编写过一系列的中文处理相关的插件。

加入钉钉技术讨论群

dingQR

阿里云Elasticsearch已正式发布啦,Elastic开源官方联合开发,集成5.5商业版本XPack功能,欢迎开通使用。
点击了解更多产品信息

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
4天前
|
人工智能 运维 架构师
开始报名,龙蜥社区系统运维联盟MeetUp暨iAutoBASE专题论坛来啦
12月27日,探讨车用基础软件技术及生态发展,欢迎报名。
开始报名,龙蜥社区系统运维联盟MeetUp暨iAutoBASE专题论坛来啦
|
4天前
|
弹性计算 Java 数据库
Web应用上云经典架构实战
本课程详细介绍了Web应用上云的经典架构实战,涵盖前期准备、配置ALB、创建服务器组和监听、验证ECS公网能力、环境配置(JDK、Maven、Node、Git)、下载并运行若依框架、操作第二台ECS以及验证高可用性。通过具体步骤和命令,帮助学员快速掌握云上部署的全流程。
|
12天前
|
弹性计算 运维 Serverless
卓越效能,极简运维,体验Serverless高可用架构,完成任务可领取转轮日历!
卓越效能,极简运维,体验Serverless高可用架构,完成任务可领取转轮日历!
|
1月前
|
运维 监控 安全
自动化运维的利剑:Ansible在现代IT架构中的应用
在数字化浪潮中,企业对IT系统的敏捷性和可靠性要求日益提高。Ansible,一种简单但强大的自动化运维工具,正成为现代IT架构中不可或缺的一部分。它通过声明式编程语言YAM,简化了系统配置、应用部署和任务自动化的过程,显著提升了运维效率和准确性。本文将深入探讨Ansible的核心特性、应用场景以及如何有效整合进现有IT环境,为读者揭示其在自动化运维中的实用价值和未来发展潜力。
|
29天前
|
消息中间件 Java Kafka
实时数仓Kappa架构:从入门到实战
【11月更文挑战第24天】随着大数据技术的不断发展,企业对实时数据处理和分析的需求日益增长。实时数仓(Real-Time Data Warehouse, RTDW)应运而生,其中Kappa架构作为一种简化的数据处理架构,通过统一的流处理框架,解决了传统Lambda架构中批处理和实时处理的复杂性。本文将深入探讨Kappa架构的历史背景、业务场景、功能点、优缺点、解决的问题以及底层原理,并详细介绍如何使用Java语言快速搭建一套实时数仓。
143 4
|
1月前
|
运维 Devops 应用服务中间件
自动化运维的利剑:Ansible在现代IT架构中的应用
【10月更文挑战第42天】本文旨在揭示自动化运维工具Ansible如何革新现代IT架构,通过简化配置管理和部署流程,提升效率和可靠性。我们将探索Ansible的核心功能、语言特性以及其在DevOps文化中的角色。文章还将展示如何借助Ansible构建模块化和可重用的配置代码,实现快速迭代与部署,并确保系统一致性。通过阅读本文,运维人员将了解如何利用Ansible优化日常任务,加速产品上线速度,同时提高系统的稳健性。
40 5
|
1月前
|
运维 负载均衡 Ubuntu
自动化运维的利器:Ansible入门与实践
【10月更文挑战第31天】在当今快速发展的信息技术时代,高效的运维管理成为企业稳定运行的关键。本文将引导读者了解自动化运维工具Ansible的基础概念、安装步骤、基本使用,以及如何通过实际案例掌握其核心功能,从而提升工作效率和系统稳定性。
|
1月前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
84 4
|
2月前
|
运维 应用服务中间件 持续交付
自动化运维的利器:Ansible入门与实践
【10月更文挑战第21天】在现代IT基础设施的管理中,自动化运维已成为提升效率、降低错误率的关键。Ansible,作为一种简单而强大的自动化工具,正被广泛应用于配置管理、应用部署和任务自动化等领域。本文将引导你了解Ansible的基本概念,通过实际案例展示如何利用Ansible简化日常运维工作,并探讨其在现代IT运维中的应用价值。无论你是新手还是有经验的系统管理员,这篇文章都将为你开启Ansible的高效之旅提供指导。
|
2月前
|
存储 运维 监控
高效运维:从基础架构到自动化管理的全面指南
【10月更文挑战第11天】 本文将深入探讨如何通过优化基础架构和引入自动化管理来提升企业IT运维效率。我们将从服务器的选择与配置、存储解决方案的评估,到网络的设计与监控,逐一解析每个环节的关键技术点。同时,重点讨论自动化工具在现代运维中的应用,包括配置管理、持续集成与部署(CI/CD)、自动化测试及故障排除等方面。通过实际案例分析,展示这些技术如何协同工作,实现高效的运维管理。无论是IT初学者还是经验丰富的专业人员,都能从中获得有价值的见解和实操经验。
103 1

热门文章

最新文章