打开微信扫一扫,关注微信公众号【数据与算法联盟】
转载请注明出处: http://blog.csdn.net/gamer_gyt
博主微博: http://weibo.com/234654758
Github: https://github.com/thinkgamer
指数平滑法是一种特殊的加权平均法,加权的特点是对离预测值较近的历史数据给予较大的权数,对离预测期较远的历史数据给予较小的权数,权数由近到远按指数规律递减,所以,这种预测方法被称为指数平滑法。它可分为一次指数平滑法、二次指数平滑法及更高次指数平滑法。
关于指数平滑的得相关资料:
ES API接口:
https://github.com/IBBD/IBBD.github.io/blob/master/elk/aggregations-pipeline.md
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline-movavg-aggregation.html理论概念
ES移动平均聚合:Moving Average的四种模型
simple
就是使用窗口内的值的和除于窗口值,通常窗口值越大,最后的结果越平滑: (a1 + a2 + … + an) / n
curl -XPOST 'localhost:9200/_search?pretty' -H 'Content-Type: application/json' -d'
{
"size": 0,
"aggs": {
"my_date_histo":{
"date_histogram":{
"field":"date",
"interval":"1M"
},
"aggs":{
"the_sum":{
"sum":{ "field": "price" }
},
"the_movavg":{
"moving_avg":{
"buckets_path": "the_sum",
"window" : 30,
"model" : "simple"
}
}
}
}
}
}
'
线性模型:Linear
对窗口内的值先做线性变换处理,再求平均:(a1 * 1 + a2 * 2 + … + an * n) / (1 + 2 + … + n)
curl -XPOST 'localhost:9200/_search?pretty' -H 'Content-Type: application/json' -d'
{
"size": 0,
"aggs": {
"my_date_histo":{
"date_histogram":{
"field":"date",
"interval":"1M"
},
"aggs":{
"the_sum":{
"sum":{ "field": "price" }
},
"the_movavg": {
"moving_avg":{
"buckets_path": "the_sum",
"window" : 30,
"model" : "linear"
}
}
}
}
}
}
'
指数平滑模型
指数模型:EWMA (Exponentially Weighted)
即: 一次指数平滑模型
EWMA模型通常也成为单指数模型(single-exponential), 和线性模型的思路类似,离当前点越远的点,重要性越低,具体化为数值的指数下降,对应的参数是alpha。 alpha值越小,下降越慢。(估计是用1 - alpha去计算的)默认的alpha=0.3
计算模型:s2 = α * x2 + (1 - α) * s1
其中α是平滑系数,si是之前i个数据的平滑值,α取值为[0,1],越接近1,平滑后的值越接近当前时间的数据值,数据越不平滑,α越接近0,平滑后的值越接近前i个数据的平滑值,数据越平滑,α的值通常可以多尝试几次以达到最佳效果。 一次指数平滑算法进行预测的公式为:xi+h=si,其中i为当前最后的一个数据记录的坐标,亦即预测的时间序列为一条直线,不能反映时间序列的趋势和季节性。
curl -XPOST 'localhost:9200/_search?pretty' -H 'Content-Type: application/json' -d'
{
"size": 0,
"aggs": {
"my_date_histo":{
"date_histogram":{
"field":"date",
"interval":"1M"
},
"aggs":{
"the_sum":{
"sum":{ "field": "price" }
},
"the_movavg": {
"moving_avg":{
"buckets_path": "the_sum",
"window" : 30,
"model" : "ewma",
"settings" : {
"alpha" : 0.5
}
}
}
}
}
}
}
'
二次指数平滑模型: Holt-Linear
计算模型:
s2 = α * x2 + (1 - α) * (s1 + t1)
t2 = ß * (s2 - s1) + (1 - ß) * t1
默认alpha = 0.3 and beta = 0.1
二次指数平滑保留了趋势的信息,使得预测的时间序列可以包含之前数据的趋势。二次指数平滑的预测公式为 xi+h=si+hti 二次指数平滑的预测结果是一条斜的直线。
curl -XPOST 'localhost:9200/_search?pretty' -H 'Content-Type: application/json' -d'
{
"size": 0,
"aggs": {
"my_date_histo":{
"date_histogram":{
"field":"date",
"interval":"1M"
},
"aggs":{
"the_sum":{
"sum":{ "field": "price" }
},
"the_movavg": {
"moving_avg":{
"buckets_path": "the_sum",
"window" : 30,
"model" : "holt",
"settings" : {
"alpha" : 0.5,
"beta" : 0.5
}
}
}
}
}
}
}
'
三次指数平滑模型:Holt-Winters无季节模型
三次指数平滑在二次指数平滑的基础上保留了季节性的信息,使得其可以预测带有季节性的时间序列。三次指数平滑添加了一个新的参数p来表示平滑后的趋势。
1: Additive Holt-Winters:Holt-Winters加法模型
下面是累加的三次指数平滑
si=α(xi-pi-k)+(1-α)(si-1+ti-1)
ti=ß(si-si-1)+(1-ß)ti-1
pi=γ(xi-si)+(1-γ)pi-k
其中k为周期
累加三次指数平滑的预测公式为: xi+h=si+hti+pi-k+(h mod k)
curl -XPOST 'localhost:9200/_search?pretty' -H 'Content-Type: application/json' -d'
{
"size": 0,
"aggs": {
"my_date_histo":{
"date_histogram":{
"field":"date",
"interval":"1M"
},
"aggs":{
"the_sum":{
"sum":{ "field": "price" }
},
"the_movavg": {
"moving_avg":{
"buckets_path": "the_sum",
"window" : 30,
"model" : "holt_winters",
"settings" : {
"type" : "add",
"alpha" : 0.5,
"beta" : 0.5,
"gamma" : 0.5,
"period" : 7
}
}
}
}
}
}
}
'
2: Multiplicative Holt-Winters:Holt-Winters乘法模型
下式为累乘的三次指数平滑:
si=αxi/pi-k+(1-α)(si-1+ti-1)
ti=ß(si-si-1)+(1-ß)ti-1
pi=γxi/si+(1-γ)pi-k 其中k为周期
累乘三次指数平滑的预测公式为: xi+h=(si+hti)pi-k+(h mod k)
α,ß,γ的值都位于[0,1]之间,可以多试验几次以达到最佳效果。
s,t,p初始值的选取对于算法整体的影响不是特别大,通常的取值为s0=x0,t0=x1-x0,累加时p=0,累乘时p=1.
curl -XPOST 'localhost:9200/_search?pretty' -H 'Content-Type: application/json' -d'
{
"size": 0,
"aggs": {
"my_date_histo":{
"date_histogram":{
"field":"date",
"interval":"1M"
},
"aggs":{
"the_sum":{
"sum":{ "field": "price" }
},
"the_movavg": {
"moving_avg":{
"buckets_path": "the_sum",
"window" : 30,
"model" : "holt_winters",
"settings" : {
"type" : "mult",
"alpha" : 0.5,
"beta" : 0.5,
"gamma" : 0.5,
"period" : 7,
"pad" : true
}
}
}
}
}
}
}
'
预测模型:Prediction
使用当前值减去前一个值,其实就是环比增长
curl -XPOST 'localhost:9200/_search?pretty' -H 'Content-Type: application/json' -d'
{
"size": 0,
"aggs": {
"my_date_histo":{
"date_histogram":{
"field":"date",
"interval":"1M"
},
"aggs":{
"the_sum":{
"sum":{ "field": "price" }
},
"the_movavg": {
"moving_avg":{
"buckets_path": "the_sum",
"window" : 30,
"model" : "simple",
"predict" : 10
}
}
}
}
}
}
'
最小化:Minimization
某些模型(EWMA,Holt-Linear,Holt-Winters)需要配置一个或多个参数。参数选择可能会非常棘手,有时不直观。此外,这些参数的小偏差有时会对输出移动平均线产生剧烈的影响。
出于这个原因,三个“可调”模型可以在算法上最小化。最小化是一个参数调整的过程,直到模型生成的预测与输出数据紧密匹配为止。最小化并不是完全防护的,并且可能容易过度配合,但是它往往比手动调整有更好的结果。
ewma和holt_linear默认情况下禁用最小化,而holt_winters默认启用最小化。 Holt-Winters最小化是最有用的,因为它有助于提高预测的准确性。 EWMA和Holt-Linear不是很好的预测指标,主要用于平滑数据,所以最小化对于这些模型来说不太有用。
通过最小化参数启用/禁用最小化:”minimize” : true
原始数据
数据为SSH login数据其中 IP/user已处理
{
"_index": "logstash-sshlogin-others-success-2017-10",
"_type": "sshlogin",
"_id": "AV-weLF8c2nHCDojUbat",
"_version": 2,
"_score": 1,
"_source": {
"srcip": "222.221.238.162",
"dstport": "",
"pid": "20604",
"program": "sshd",
"message": "dwasw-ibb01:Oct 19 23:38:02 176.231.228.130 sshd[20604]: Accepted publickey for nmuser from 222.221.238.162 port 49484 ssh2",
"type": "zsh-sshlogin",
"ssh_type": "ssh_successful_login",
"forwarded": "false",
"manufacturer": "others",
"IndexTime": "2017-10",
"path": "/home/logstash/log/logstash_data/aaa/sshlogin/11.txt",
"number": 1,
"hostname": "116.241.218.120",
"protocol": "ssh2",
"@timestamp": "2017-10-19T15:38:02.000Z",
"ssh_method": "publickey",
"_hostname": "wq-ibb01",
"@version": "1",
"host": "localhost",
"srcport": "49484",
"dstip": "",
"category": "sshlogin",
"user": "nmuwser"
}
}
利用ES API接口去调用查询数据
“interval”: “hour”: hour为单位,这里可以是分钟,小时,天,周,月
“format”: “yyyy-MM-dd HH”: 聚合结果得日期格式
"the_sum": {
"sum": {
"field": "number"
}
}
number为要聚合得字段
curl -POST 'localhost:9200/logstash-sshlogin-others-success-2017-10/sshlogin/_search?pretty' -H 'Content-Type: application/json' -d'
{
"size": 0,
"query": {
"term": {
"ssh_type": "ssh_successful_login"
}
},
"aggs": {
"hour_sum": {
"date_histogram": {
"field": "@timestamp",
"interval": "hour",
"format": "yyyy-MM-dd HH"
},
"aggs": {
"the_sum": {
"sum": {
"field": "number"
}
},
"the_movavg": {
"moving_avg": {
"buckets_path": "the_sum",
"window": 30,
"model": "holt",
"settings": {
"alpha": 0.5,
"beta": 0.7
}
}
}
}
}
}
}'
得到的结果形式为:
{
"took" : 35,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"failed" : 0
},
"hits" : {
"total" : 206821,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"hour_sum" : {
"buckets" : [
{
"key_as_string" : "2017-09-30 16",
"key" : 1506787200000,
"doc_count" : 227,
"the_sum" : {
"value" : 227.0 }
},
{
"key_as_string" : "2017-09-30 17",
"key" : 1506790800000,
"doc_count" : 210,
"the_sum" : {
"value" : 210.0 },
"the_movavg" : {
"value" : 113.5 }
},
{
"key_as_string" : "2017-09-30 18",
"key" : 1506794400000,
"doc_count" : 365,
"the_sum" : {
"value" : 365.0 },
"the_movavg" : {
"value" : 210.0 }
},
...
}
}
对应得python代码(查询数据到画图)
# coding: utf-8
from elasticsearch import Elasticsearch
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontManager, FontProperties
class Smooth:
def __init__(self,index):
self.es = Elasticsearch(['localhost:9200'])
self.index = index
# 处理mac中文编码错误
def getChineseFont(self):
return FontProperties(fname='/System/Library/Fonts/PingFang.ttc')
# 对index进行聚合
def agg(self):
# "format": "yyyy-MM-dd HH:mm:SS"
dsl = '''
{
"size": 0,
"query": {
"term": {
"ssh_type": "ssh_successful_login"
}
},
"aggs": {
"hour_sum": {
"date_histogram": {
"field": "@timestamp",
"interval": "day",
"format": "dd"
},
"aggs": {
"the_sum": {
"sum": {
"field": "number"
}
},
"the_movavg": {
"moving_avg": {
"buckets_path": "the_sum",
"window": 30,
"model": "holt_winters",
"settings": {
"alpha": 0.5,
"beta": 0.7
}
}
}
}
}
}
}
'''
res = self.es.search(index=self.index, body=dsl)
return res['aggregations']['hour_sum']['buckets']
# 画图
def draw(self):
x,y_true,y_pred = [],[],[]
for one in self.agg():
x.append(one['key_as_string'])
y_true.append(one['the_sum']['value'])
if 'the_movavg' in one.keys(): # 前几条数据没有 the_movavg 字段,故将真实值赋值给pred值
y_pred.append(one['the_movavg']['value'])
else:
y_pred.append(one['the_sum']['value'])
x_line = range(len(x))
plt.figure(figsize=(10,5))
plt.plot(x_line,y_true,color="r")
plt.plot(x_line,y_pred,color="g")
plt.xlabel(u"每单位时间",fontproperties=self.getChineseFont()) #X轴标签
plt.xticks(range(len(x)), x)
plt.ylabel(u"聚合结果",fontproperties=self.getChineseFont()) #Y轴标签
plt.title(u"10月份 SSH 主机登录成功聚合图",fontproperties=self.getChineseFont()) # 标题
plt.legend([u"True value",u"Predict value"])
plt.show()
smooth = Smooth("logstash-sshlogin-others-success-2017-10")
print smooth.draw()
结果图示为: