R语言时间序列数据指数平滑法分析交互式动态可视化

简介: R语言时间序列数据指数平滑法分析交互式动态可视化

R语言提供了丰富的功能,可用于绘制R中的时间序列数据。

 

包括:

  • 自动绘制  xts  时间序列对象(或任何可转换为xts的对象)的图。
  • 高度可配置的轴和系列显示(包括可选的第二个Y轴)。
  • 丰富的交互式功能,包括  缩放/平移  和系列/点  高亮显示。
  • 显示   序列周围的上/下条(例如,预测间隔)。
  • 各种图形叠加层,包括  阴影区域,  事件线和点  注释。
  • 与常规R图一样(通过RStudio Viewer)在R控制台上使用。
  • 无缝嵌入到  R Markdown  文档和  Shiny  Web应用程序中。

安装

可以在R控制台,R Markdown文档和Shiny应用程序中使用折线图。

演示版

这是一个由多个时间序列对象创建的简单折线图:




lungDeaths <- cbind(mdeaths, fdeaths)
graph(lungDeaths)



 

请此图是完全交互式的:当鼠标移到系列上时,将显示各个值。还可以选择要放大的图形区域(双击缩小)。

可以通过将其他命令通过管道传递到原始图表对象上来自定义图表。在这里,我们将范围选择组件 传递到原始图形上:


graph(lungDeaths) %>% RangeSelector()


此示例使用magrittr  包中的  %>% (或“ pipe”)运算符  来构成带有范围选择器的图表。可以使用类似的语法来自定义轴,系列和其他选项。例如:

graph(lungDeaths) %>%
Options(stackedGraph = TRUE) %>%
RangeSelector(height = 20)

提供了许多用于定制系列和轴显示的选项。可以将多个下/值/上样式系列组合到带有阴影条的单个显示中。

这是一个时间序列分析之指数平滑法示例,它说明了阴影条,指定图标题,在x轴上绘制网格以及为系列颜色使用自定义调色板的示例:


graph(predicted, main = "Predicted Lung Deaths (UK)") 

从侧边栏链接到的  包括更多可用于自定义的各种功能的示例。



graph(lungDeaths, main = "Deaths from Lung Disease (UK)") %>%
Options(stepPlot = TRUE)

相关文章
|
3月前
|
数据可视化 数据挖掘 图形学
R语言基础可视化:使用ggplot2构建精美图形的探索
【8月更文挑战第29天】 `ggplot2`是R语言中一个非常强大的图形构建工具,它基于图形语法提供了一种灵活且直观的方式来创建各种统计图形。通过掌握`ggplot2`的基本用法和美化技巧,你可以轻松地将复杂的数据转化为直观易懂的图形,从而更好地理解和展示你的数据分析结果。希望本文能够为你探索`ggplot2`的世界提供一些帮助和启发。
|
3月前
|
数据可视化 数据挖掘 数据处理
R语言高级可视化技巧:使用Plotly与Shiny制作互动图表
【8月更文挑战第30天】通过使用`plotly`和`shiny`,我们可以轻松地创建高度互动的数据可视化图表。这不仅增强了图表的表现力,还提高了用户与数据的交互性,使得数据探索变得更加直观和高效。本文仅介绍了基本的使用方法,`plotly`和`shiny`还提供了更多高级功能和自定义选项,等待你去探索和发现。希望这篇文章能帮助你掌握使用`plotly`和`shiny`制作互动图表的技巧,并在你的数据分析和可视化工作中发挥更大的作用。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
6月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
6月前
|
Web App开发 数据可视化 数据挖掘
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
|
6月前
|
数据可视化
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码2
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
6月前
|
数据可视化 数据挖掘
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码1
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码