无需在数据集上学习和预训练,这种图像修复新方法效果惊人 | 论文

简介:
本文来自AI新媒体量子位(QbitAI)

Reddit上又炸了,原因是一个无需在数据集上学习和预训练就可以超分辨率、修补和去噪的方法:Deep image prior。

帖子的博主是俄罗斯斯科尔科沃科技研究院(Skoltech)的博士生Dmitry Ulyanov,他介绍了与两名导师 Victor Lempitsky和Andrea Vedaldi共同完成的论文《Deep Image Prior》。

效果惊人

在项目主页上,我们看到了Deep image prior惊人的修复结果。

在这些示例中,研究人员用深度神经网络分析了几个图像恢复问题。值得注意的是,研究人员从来没用数据集来训练或预先训练过它们,而是作为一个结构化的图像整体。

其中蜗牛图的恢复为典型的JPEG压缩图像的盲修复问题,通过不断迭代,这种新方法可以恢复大部分信息同时消除色圈和块效应。

在4x图像超分辨率的演示中我们发现,新方法从使用过任何一张低分辨率的图像,但却生成了更清晰的结果。

 4x图像超分辨率结果

在区域修补示例中,尽管没有学习,但新方法可以成功修复大块区域,在这种操作中,超参数的选择很重要。

 区域修补结果

此外,研究人员还与Shepard网络了卷积稀疏编码的效果对比,对比一看,还是新方法的效果更好。

 上部分为与Shepard网络的对比,下部分为与卷积稀疏编码的对比

论文摘要

深度卷积网络已然成为图像生成和修复最流行的工具。因为它们能从大量示例图像中学习真实的图像先验(image prior),因此在处理图像时效果显著。

与上述思路相反,在这篇文章中,研究人员表明,生成网络能够在开始任何学习前捕获大量low-level的图像统计信息。为了证明这一点,研究人员还展示了一个随机初始化的神经网络可以作为一个手工先验(handcraft prior),在去噪、超分辨率、图像修复等标准的逆问题上效果很好。

此外,同样的先验可以用来反推深度神经表征进行诊断,并根据输入闪光/无闪光图像对恢复图像。

参考资料

其实,在项目首页上还有更多好玩的对比示例,地址为:

https://dmitryulyanov.github.io/deep_image_prior

论文地址:

https://sites.skoltech.ru/app/data/uploads/sites/25/2017/11/deep_image_prior.pdf

补充材料:

https://box.skoltech.ru/index.php/s/ib52BOoV58ztuPM#pdfviewer

代码地址:

https://github.com/DmitryUlyanov/deep-image-prior/blob/master/README.md

本文作者:林鳞 
原文发布时间:2017-12-01
目录
打赏
0
0
0
0
16429
分享
相关文章
NeurIPS 2024:杜克大学&谷歌提出SLED解码框架,无需外部数据与额外训练,有效缓解大语言模型幻觉,提高事实准确性
在NeurIPS 2024上,杜克大学和谷歌团队提出Self Logits Evolution Decoding(SLED),旨在提高大语言模型(LLMs)的事实准确性。SLED通过对比模型早期层和最终层的logits,利用内部潜在知识增强输出准确性,无需外部知识库或额外微调。实验显示,SLED能显著提升多选题、开放生成等任务的准确性,最高提升达20%,且延迟开销极低。该方法具有创新性和有效性,但也存在实现复杂、计算开销等挑战。
33 2
NeurIPS 2024:无需训练,一个框架搞定开放式目标检测、实例分割
在NeurIPS 2024会议上,论文提出了一种名为VL-SAM的框架,旨在解决开放式目标检测和实例分割任务。该框架结合了视觉语言模型(VLM)和Segment-Anything模型(SAM),利用注意力图作为提示,在无需额外训练的情况下实现未知物体的检测与分割。实验结果显示,VL-SAM在长尾实例分割数据集(LVIS)和角落情况目标检测数据集(CODA)上均表现出色,展示了其在现实世界应用中的潜力。然而,注意力图质量和计算复杂性仍是潜在挑战。
94 19
不靠更复杂的策略,仅凭和大模型训练对齐,零样本零经验单LLM调用,成为网络任务智能体新SOTA
近期研究通过调整网络智能体的观察和动作空间,使其与大型语言模型(LLM)的能力对齐,显著提升了基于LLM的网络智能体性能。AgentOccam智能体在WebArena基准上超越了先前方法,成功率提升26.6个点(+161%)。该研究强调了与LLM训练目标一致的重要性,为网络任务自动化提供了新思路,但也指出其性能受限于LLM能力及任务复杂度。论文链接:https://arxiv.org/abs/2410.13825。
92 12
训练Sora模型,你可能需要这些(开源代码,模型,数据集及算力评估)
在之前的文章《复刻Sora有多难?一张图带你读懂Sora的技术路径》,《一文看Sora技术推演》我们总结了Sora模型上用到的一些核心技术和论文,今天这篇文章我们将整理和总结现有的一些开源代码、模型、数据集,以及初步训练的算力评估,希望可以帮助到国内的创业公司和个人开发者展开更深的研究。
【网安AIGC专题10.19】论文4:大模型(CODEX 、CodeGen 、INCODER )+自动生成代码评估:改进自动化测试方法、创建测试输入生成器、探索新的评估数据集扩充方法
【网安AIGC专题10.19】论文4:大模型(CODEX 、CodeGen 、INCODER )+自动生成代码评估:改进自动化测试方法、创建测试输入生成器、探索新的评估数据集扩充方法
544 1
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(下)
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(下)
223 0
让大模型不再巨无霸,这是一份最新的大模型参数高效微调综述
【5月更文挑战第12天】最新综述探讨了大模型参数高效微调,旨在减少计算成本、增强泛化能力和灵活性。方法包括Additive、Selective、Reparameterized和Hybrid PEFT,已应用于NLP、CV和多模态学习。尽管取得进展,仍需解决泛化、效率和可解释性问题。未来研究将关注多任务学习、强化学习和神经架构搜索。论文链接:https://arxiv.org/pdf/2403.14608.pdf
463 2
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
|
11月前
大模型开发:描述一个你遇到过的具有挑战性的数据集问题以及你是如何解决它的。
在大模型开发中,面对不平衡数据集(某些类别样本远超其他类别)的问题,可能导致模型偏向多数类。在二分类问题中,正样本远少于负样本,影响模型学习和性能。为解决此问题,采用了数据重采样(过采样、欠采样)、SMOTE技术合成新样本、使用加权交叉熵损失函数、集成学习(Bagging、Boosting)以及模型调整(复杂度控制、早停法、正则化)。这些策略有效提升了模型性能,尤其是对少数类的预测,强调了针对数据集问题灵活运用多种方法的重要性。
107 0
19ContraBERT:顶会ICSE23 数据增强+对比学习+代码预训练模型,提升NLP模型性能与鲁棒性:处理程序变异(变量重命名)【网安AIGC专题11.15】
19ContraBERT:顶会ICSE23 数据增强+对比学习+代码预训练模型,提升NLP模型性能与鲁棒性:处理程序变异(变量重命名)【网安AIGC专题11.15】
305 1

量子位

+ 订阅
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等