无需在数据集上学习和预训练,这种图像修复新方法效果惊人 | 论文

简介:
本文来自AI新媒体量子位(QbitAI)

Reddit上又炸了,原因是一个无需在数据集上学习和预训练就可以超分辨率、修补和去噪的方法:Deep image prior。

帖子的博主是俄罗斯斯科尔科沃科技研究院(Skoltech)的博士生Dmitry Ulyanov,他介绍了与两名导师 Victor Lempitsky和Andrea Vedaldi共同完成的论文《Deep Image Prior》。

效果惊人

在项目主页上,我们看到了Deep image prior惊人的修复结果。

在这些示例中,研究人员用深度神经网络分析了几个图像恢复问题。值得注意的是,研究人员从来没用数据集来训练或预先训练过它们,而是作为一个结构化的图像整体。

其中蜗牛图的恢复为典型的JPEG压缩图像的盲修复问题,通过不断迭代,这种新方法可以恢复大部分信息同时消除色圈和块效应。

在4x图像超分辨率的演示中我们发现,新方法从使用过任何一张低分辨率的图像,但却生成了更清晰的结果。

 4x图像超分辨率结果

在区域修补示例中,尽管没有学习,但新方法可以成功修复大块区域,在这种操作中,超参数的选择很重要。

 区域修补结果

此外,研究人员还与Shepard网络了卷积稀疏编码的效果对比,对比一看,还是新方法的效果更好。

 上部分为与Shepard网络的对比,下部分为与卷积稀疏编码的对比

论文摘要

深度卷积网络已然成为图像生成和修复最流行的工具。因为它们能从大量示例图像中学习真实的图像先验(image prior),因此在处理图像时效果显著。

与上述思路相反,在这篇文章中,研究人员表明,生成网络能够在开始任何学习前捕获大量low-level的图像统计信息。为了证明这一点,研究人员还展示了一个随机初始化的神经网络可以作为一个手工先验(handcraft prior),在去噪、超分辨率、图像修复等标准的逆问题上效果很好。

此外,同样的先验可以用来反推深度神经表征进行诊断,并根据输入闪光/无闪光图像对恢复图像。

参考资料

其实,在项目首页上还有更多好玩的对比示例,地址为:

https://dmitryulyanov.github.io/deep_image_prior

论文地址:

https://sites.skoltech.ru/app/data/uploads/sites/25/2017/11/deep_image_prior.pdf

补充材料:

https://box.skoltech.ru/index.php/s/ib52BOoV58ztuPM#pdfviewer

代码地址:

https://github.com/DmitryUlyanov/deep-image-prior/blob/master/README.md

本文作者:林鳞 
原文发布时间:2017-12-01
相关文章
|
存储 负载均衡 NoSQL
MongoDB·最佳实践·count不准原因分析
背景 一般来说,除了由于secondary延迟可能造成查询secondary节点数据不准以外,关于count的准确性问题,在MongoDB4.0官方文档中有这么一段话On a sharded cluster, db.
|
监控 Linux 数据安全/隐私保护
IPMI介绍
IPMI简要介绍
7914 0
|
数据采集 数据可视化 关系型数据库
【python案例】基于Python 爬虫的房地产数据可视化分析设计与实现
本文设计并实现了一个基于Python爬虫的房地产数据可视化分析系统,通过BeautifulSoup框架采集房源信息,使用pandas进行数据处理,MySQL存储数据,并利用pyecharts进行数据可视化,以帮助用户更直观地了解房源信息并辅助选房购房。
1755 4
|
10月前
|
数据采集 人工智能 安全
阿里云携手DeepSeek,AI应用落地五折起!
近年来,人工智能技术飞速发展,越来越多的企业希望借助AI的力量实现数字化转型,提升效率和竞争力。然而,AI应用的开发和落地并非易事,企业往往面临着技术门槛高、成本投入大、落地效果难以保障等挑战。
338 1
|
机器学习/深度学习 人工智能 程序员
程序员裁员潮:技术变革下的职业危机
技术变革下程序员面临的裁员潮及其影响,并提供了应对策略。
319 0
|
机器学习/深度学习 人工智能 运维
智能化运维的崛起:自动化与人工智能在IT管理中的融合
本文深入探讨了智能化运维在现代企业中的重要性,并分析了自动化技术和人工智能(AI)如何共同推动IT运维管理的革新。文章首先概述了传统运维面临的挑战,然后详细介绍了智能化运维的核心概念和实施步骤,最后通过具体案例展示了智能化运维在实际工作中的应用效果和潜在价值。
375 0
|
监控 测试技术
APP的稳定性测试如何做?
APP的稳定性测试如何做?
1045 1
|
存储 Linux API
解析音频输出调节音量的原理以及调节的方法
解析音频输出调节音量的原理以及调节的方法
1716 0
|
SQL 索引
com.microsoft.sqlserver.SQLServerException:索引1超出范围
com.microsoft.sqlserver.SQLServerException:索引1超出范围
240 0
|
数据采集 开发框架 .NET
Pythonnet:Python与.NET的无缝集成
Pythonnet是一个包,提供了与 .NET 公共语言运行时 (CLR) 近乎无缝的集成,为 Python 程序员和 .NET 开发人员提供了强大的应用程序脚本工具。它支持 Windows、Linux 和 macOS 上的 .NET Framework 和 .NET Core。Pythonnet允许将 .NET 程序集和命名空间导入为 Python 模块和包,以及从 Python 代码调用 .NET 方法和属性,反之亦然。它还支持 .NET 对象的动态类型和关键字参数,并与流行的 Python 库(如 numpy、pandas、matplotlib 等)良好集成。
842 0