在上一回合谈到,客户端应用程序的所有操作都在主线程上进行,所以一些比较耗时的操作可以在异步线程上去进行,充分利用CPU的性能来达到程序的最佳性能。对于Unity而言,又提供了另外一种『异步』的概念,就是协程(
Coroutine
),通过反编译,它本质上还是在主线程上的优化手段,并不属于真正的多线程(Thread
)。那么问题来了,怎样在Unity中使用多线程呢?
Thread 初步认识
虽然这不是什么难点,但我觉得还是有必要提一下多线程编程几个值得注意的事项:
- 线程启动
在Unity中创建一个异步线程是非常简单的,直接使用类System.Threading.Thread
就可以创建一个线程,线程启动之后毕竟要帮我们去完成某件事情。在编程领域,这件事就可以描述了一个方法,所以需要在构造函数中传入一个方法的名称。
Worker workerObject = new Worker();
Thread workerThread = new Thread(workerObject.DoWork)
workerThread.Start();
- 线程终止
线程启动很简单,那么线程终止呢,是不是调用Abort
方法。不是,虽然Thread
对象提供了Abort
方法,但并不推荐使用它,因为它并不会马上停止,如果涉及非托管代码的调用,还需要等待非托管代码的处理结果。
一般停止线程的方法是为线程设定一个条件变量,在线程的执行方法里设定一个循环,并以这个变量为判断条件,如果为
false
则跳出循环,线程结束。
public class Worker
{
public void DoWork()
{
while (!_shouldStop)
{
Console.WriteLine("worker thread: working...");
}
Console.WriteLine("worker thread: terminating gracefully.");
}
public void RequestStop()
{
_shouldStop = true;
}
private volatile bool _shouldStop;
}
所以,你可以在应用程序退出(OnApplicationQuit
)时,将_shouldStop
设置为true
来到达线程的安全退出。
- 共享数据处理
多线程最麻烦的一点就是共享数据的处理了,想象一下A,B两个线程同一时刻处理一个变量,它最终的值到底是什么。所以一般需要使用lock
,但C#提供了另一个关键字volatile
,告诉CPU不读缓存直接把最新的值返回。所以_shouldStop
被volatile
修饰。
Dispatcher的引入
是不是觉得多线程好简单,好像也没想象的那么复杂,当你愉快的在多线程中访问UI控件时,Duang~~~,一个错误告诉你,不能在异步线程访问UI控件。这是肯定的,跨线程访问UI控件是不安全的,理应被禁止。那怎么办呢?
如果你有其他客户端的开发经验,比如iOS或者WPF经验,肯定知道Dispatcher。Dispatcher翻译过来就是调度员的意思,简单理解就是每个线程都有唯一的调度员,那么主线程就有主线程的调度员,实际上我们的代码最终也是交给调度员去执行,所以要去访问UI线程上的控件,我们可以间接的向调度员发出命令。
所以在WPF中,跨线程访问UI控件一般的写法如下:
Thread thread=new Thread(()=>{
this.Dispatcher.Invoke(()=>{
//UI
this.textBox.text=...
this.progressBar.value=...
});
});
嗯~ o( ̄▽ ̄)o,不错,但尴尬的是Unity没有提供Dispatcher啊!
对,但我们可以自己实现,把握住几个关键点:
- 自己的Dispatcher一定是一个MonoBehaviour,因为访问UI控件需要在主线程上
- 什么时候去更新呢,考虑生产者-消费者模式,有任务来了,我就是更新到UI上
- 在Unity中有这么个方法可以轮询是不是有任务要更新,那就是
Update
方法,每一帧会执行
所以自定义的UnityDispatcher
提供一个BeginInvoke
方法,并接送一个Action
public void BeginInvoke(Action action){
while (true) {
//以原子操作的形式,将 32 位有符号整数设置为指定的值并返回原始值。
if (0 == Interlocked.Exchange (ref _lock, 1)) {
//acquire lock
_wait.Enqueue(action);
_run = true;
//exist
Interlocked.Exchange (ref _lock,0);
break;
}
}
}
这是一个生产者,向队列里添加需要处理的Action。有了生产者之后,还需要消费者,Unity中的Update
就是一个消费者,每一帧都会执行,所以如果队列里有任务,它就执行
void Update(){
if (_run) {
Queue<Action> execute = null;
//主线程不推荐使用lock关键字,防止block 线程,以至于deadlock
if (0 == Interlocked.Exchange (ref _lock, 1)) {
execute = new Queue<Action>(_wait.Count);
while(_wait.Count!=0){
Action action = _wait.Dequeue ();
execute.Enqueue (action);
}
//finished
_run=false;
//release
Interlocked.Exchange (ref _lock,0);
}
//not block
if (execute != null) {
while (execute.Count != 0) {
Action action = execute.Dequeue ();
action ();
}
}
}
}
值得注意的是,Queue
不是线程安全的,所以需要锁,我使用了Interlocked.Exchange
,好处是它以原子的操作来执行并且还不会阻塞线程,因为主线程本身任务繁重,所以我不推荐使用lock
。
Coroutine和MultiThreading混合使用
到目前为止,相信你对Coroutine
和Thread
有清楚的认识,但它们并不是互斥的,可以混合使用,比如Coroutine
等待异步线程返回结果,假设异步线程里执行的是非常复杂的AI操作,这显然放在主线程会非常繁重。
由于篇幅有限,我不贴完整代码了,只分析其中最核心思路:
在Thread
中有一个WaitFor
方法,它每一帧都会询问异步任务是否完成:
public bool Update(){
if(_isDown){
OnFinished ();
return true;
}
return false;
}
public IEnumerator WaitFor(){
while(!Update()){
//暂停协同程序,下一帧再继续往下执行
yield return null;
}
}
那么在某一个UI线程中,等待异步线程的结果,注意利用StartCouroutine
,此等待并非阻塞线程,相信你已经它内部的机制了。
void Start(){
Debug.Log("Main Thread :"+Thread.CurrentThread.ManagedThreadId+" work!");
StartCoroutine (Move());
}
IEnumerator Move()
{
pinkRect.transform.DOLocalMoveX(250, 1.0f);
yield return new WaitForSeconds(1);
pinkRect.transform.DOLocalMoveY(-150, 2);
yield return new WaitForSeconds(2);
//AI操作,陷入深思,在异步线程执行,GreenRect不会卡顿
job.Start();
yield return StartCoroutine (job.WaitFor());
pinkRect.transform.DOLocalMoveY(150, 2);
}
小结
这两篇文章为大家介绍了怎样在Unity中使用协程和多线程,多线程其实不难,但同步数据是最麻烦的。Coroutine实际上就是IEnumerator
和yield
这两个语法糖让我们很难理解其中的奥秘,推荐使用反编译工具去查看,相信你会豁然开朗。
源代码托管在Github上,点击此了解